In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By u...In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By using strict monotonicity of the incidence function and constructing a Lyapunov functional, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. When the nonlinear inci- dence rate is a saturated incidence rate, our result provides a new global stability condition for a small rate of immunity loss.展开更多
We study global asymptotic stability for an SIS epidemic model with maturation delay proposed by K. Cooke, P. van den Driessche and X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemi...We study global asymptotic stability for an SIS epidemic model with maturation delay proposed by K. Cooke, P. van den Driessche and X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol. 39(4) (1999) 332-352. It is assumed that the population has a nonlinear birth term and disease causes death of infective individuals. By using a monotone iterative method, we establish sufficient conditions for the global stability of an endemic equilibrium when it exists dependently on the monotone property of the birth rate function. Based on the analysis, we further study the model with two specific birth rate functions BI(N) = be-aN and B3(N) = A/N + c, where N denotes the total population. For each model, we obtain the disease induced death rate which guarantees the global stability of the endemic equilibrium and this gives a positive answer for an open problem by X. Q. Zhao and X. Zou, Threshold dynamics in a delayed SIS epidemic model, J. Math. Anal. Appl. 257(2) (2001) 282-291.展开更多
基金supported in part by JSPS Fellows,No.237213 of Japan Society for the Promotion of Science to the first authorthe Grant MTM2010-18318 of the MICINN,Spanish Ministry of Science and Innovation to the second authorScientific Research (c),No.21540230 of Japan Society for the Promotion of Science to the third author
文摘In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By using strict monotonicity of the incidence function and constructing a Lyapunov functional, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. When the nonlinear inci- dence rate is a saturated incidence rate, our result provides a new global stability condition for a small rate of immunity loss.
文摘We study global asymptotic stability for an SIS epidemic model with maturation delay proposed by K. Cooke, P. van den Driessche and X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol. 39(4) (1999) 332-352. It is assumed that the population has a nonlinear birth term and disease causes death of infective individuals. By using a monotone iterative method, we establish sufficient conditions for the global stability of an endemic equilibrium when it exists dependently on the monotone property of the birth rate function. Based on the analysis, we further study the model with two specific birth rate functions BI(N) = be-aN and B3(N) = A/N + c, where N denotes the total population. For each model, we obtain the disease induced death rate which guarantees the global stability of the endemic equilibrium and this gives a positive answer for an open problem by X. Q. Zhao and X. Zou, Threshold dynamics in a delayed SIS epidemic model, J. Math. Anal. Appl. 257(2) (2001) 282-291.