Thermal control coatings were fabricated by mixing of La1-xSrxMnO3(LSMO)powder and acrylic resin and brushed on Al alloy substrate.The powders of La0.7Sr0.3MnO3 and La0.8Sr0.2MnO3 were prepared using sol-gel method.XR...Thermal control coatings were fabricated by mixing of La1-xSrxMnO3(LSMO)powder and acrylic resin and brushed on Al alloy substrate.The powders of La0.7Sr0.3MnO3 and La0.8Sr0.2MnO3 were prepared using sol-gel method.XRD results reveal the phase structure of LSMO powders are perovskite.The transition temperature from metal to insulator of La0.7Sr0.3MnO3 and La0.8Sr0.2MnO3 are 300 and 275 K,respectively.The emissivity evolution with temperature of the coatings was measured.For La0.7Sr0.3MnO3/acrylic resin coating,the emissivity increases from 0.56 to 0.88,and for La0.7Sr0.3MnO3/acrylic resin coating from 0.50 to 0.90.展开更多
基金NSFC(51001039)National Basic Research Program of China(2007CB607602)+1 种基金Fundamental Research Funds for the Central Universities(HIT.NSRIF.2009030)Program of Excellent Teams of Harbin Institute of Technology
文摘Thermal control coatings were fabricated by mixing of La1-xSrxMnO3(LSMO)powder and acrylic resin and brushed on Al alloy substrate.The powders of La0.7Sr0.3MnO3 and La0.8Sr0.2MnO3 were prepared using sol-gel method.XRD results reveal the phase structure of LSMO powders are perovskite.The transition temperature from metal to insulator of La0.7Sr0.3MnO3 and La0.8Sr0.2MnO3 are 300 and 275 K,respectively.The emissivity evolution with temperature of the coatings was measured.For La0.7Sr0.3MnO3/acrylic resin coating,the emissivity increases from 0.56 to 0.88,and for La0.7Sr0.3MnO3/acrylic resin coating from 0.50 to 0.90.