期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Secular change in lifetime of granitic crust and the continental growth: A new view from detrital zircon ages of sandstones 被引量:5
1
作者 Hikaru Sawada yukio isozaki +2 位作者 Shuhei Sakata Takafumi Hirata Shigenori Maruyama 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第4期1099-1115,共17页
U-Pb ages of detrital zircons were newly dated for 4 Archean sandstones from the Pilbara craton in Australia, Wyoming craton in North America, and Kaapvaal craton in Africa. By using the present results with previousl... U-Pb ages of detrital zircons were newly dated for 4 Archean sandstones from the Pilbara craton in Australia, Wyoming craton in North America, and Kaapvaal craton in Africa. By using the present results with previously published data, we compiled the age spectra of detrital zircons for 2.9, 2.6, 2.3,1.0, and0.6 Ga sandstones and modern river sands in order to document the secular change in age structure of continental crusts through time. The results demonstrated the following episodes in the history of continental crust:(1) low growth rate of the continents due to the short cycle in production/destruction of granitic crust during the Neoarchean to Paleoproterozoic(2.9-23 Ga),(2) net increase in volume of the continents during Paleo-to Mesoproterozoic(2.3-1.0 Ga), and(3) net decrease in volume of the continents during the Neoproterozoic and Phanerozoic(after 1.0 Ga). In the Archean and Paleoproterozoic, the embryonic continents were smaller than the modern continents, probably owing to the relatively rapid production and destruction of continental crust. This is indeed reflected in the heterogeneous crustal age structure of modern continents that usually have relatively small amount of Archean crusts with respect to the post-Archean ones. During the Mesoproterozoic, plural continents amalgamated into larger ones comparable to modern continental blocks in size. Relatively older crusts were preserved in continental interiors, whereas younger crusts were accreted along continental peripheries.In addition to continental arc magmatism, the direct accretion of intra-oceanic island arc around continental peripheries also became important for net continental growth. Since 1.0 Ga, total volume of continents has decreased, and this appears consistent with on-going phenomena along modern active arc-trench system with dominant tectonic erosion and/or arc subduction. Subduction of a huge amount of granitic crusts into the mantle through time is suggested, and this requires re-consideration of the mantle composition and heterogeneity. 展开更多
关键词 Detrital zircon U-Pb age Continental growth Subduction erosion Preservation bias
下载PDF
High-reliability zircon separation for hunting the oldest material on Earth: An automatic zircon separator with image-processing/microtweezers-manipulating system and double-step dating 被引量:1
2
作者 yukio isozaki Shinji Yamamoto +7 位作者 Shuhei Sakata Hideyuki Obayashi Takafumi Hirata Ken-ichi Obori Toshinori Maebayashi Satoshi Takeshima Toshikazu Ebisuzaki Shigenori Maruyama 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第4期1073-1083,共11页
Despite the recent development in radiometric dating of numerous zircons by LA-ICPMS, mineral separation still remains a major obstacle, particularly in the search for the oldest material on Earth. To improve the effi... Despite the recent development in radiometric dating of numerous zircons by LA-ICPMS, mineral separation still remains a major obstacle, particularly in the search for the oldest material on Earth. To improve the efficiency in zircon separation by an order of magnitude, we have designed/developed a new machine-an automatic zircon separator(AZS). This is designed particularly for automatic pick-up of100 μm-sized zircon grains out of a heavy mineral fraction after conventional separation procedures. The AZS operates in three modes:(1) image processing to choose targeted individual zircon grains out of all heavy minerals spread on a tray,(2) automatic capturing of the individual zircon grains with microtweezers, and(3) placing them one-by-one in a coordinated alignment on a receiving tray. The automatic capturing was designed/created for continuous mineral selecting without human presence for many hours. This software also enables the registration of each separated zircon grain for dating, by recording digital photo-image, optical(color) indices, and coordinates on a receiving tray. We developed two new approaches for the dating; i.e.(1) direct dating of zircons selected by LA-ICPMS without conventional resin-mounting/polishing,(2) high speed U-Pb dating, combined with conventional sample preparation procedures using the new equipment with multiple-ion counting detectors(LA-MIC-ICPMS).With the first approach, Pb-Pb ages obtained from the surface of a mineral were crosschecked with the interior of the same grain after resin-mounting/polishing. With the second approach, the amount of time required for dating one zircon grain is ca. 20 s, and a sample throughput of 〉150 grains per hour can be achieved with sufficient precision(ca. 0.5%).We tested the practical efficiency of the AZS, by analyzing an Archean Jack Hills conglomerate in Western Australia with the known oldest(〉4.3 Ga) zircon on Earth. Preliminary results are positive; we were able to obtain more than 194 zircons that are over 4.0 Ga out of ca. 3800 checked grains, and 9 grains were over 4300 Ma with the oldest at 4371 ± 7 Ma. This separation system by AZS, combined with the new approaches, guarantees much higher yield in the hunt for old zircons. 展开更多
关键词 HADEAN ZIRCON U-Pb dating LA-ICPMS Automatic mineral separator Primordial crust
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部