In this paper, we shall firstly illustrate why we should introduce an It5 type set-valued stochastic differential equation and why we should notice the almost everywhere problem. Secondly we shall give a clear definit...In this paper, we shall firstly illustrate why we should introduce an It5 type set-valued stochastic differential equation and why we should notice the almost everywhere problem. Secondly we shall give a clear definition of Aumann type Lebesgue integral and prove the measurability of the Lebesgue integral of set-valued stochastic processes with respect to time t. Then we shall present some new properties, especially prove an important inequality of set-valued Lebesgue integrals. Finally we shall prove the existence and the uniqueness of a strong solution to the It5 type set-valued stochastic differential equation.展开更多
基金Supported by National Natural Science Foundation of China (Grant No. 10771010), PHR (IHLB), Research Fund of Beijing Educational Committee, ChinaGrant-in-Aid for Scientific Research 19540140, Japan
文摘In this paper, we shall firstly illustrate why we should introduce an It5 type set-valued stochastic differential equation and why we should notice the almost everywhere problem. Secondly we shall give a clear definition of Aumann type Lebesgue integral and prove the measurability of the Lebesgue integral of set-valued stochastic processes with respect to time t. Then we shall present some new properties, especially prove an important inequality of set-valued Lebesgue integrals. Finally we shall prove the existence and the uniqueness of a strong solution to the It5 type set-valued stochastic differential equation.