High-temperature superconductivity(HTSC)remains one of the most challenging and fascinating mysteries in condensed matter physics.Recently,superconductivity with transition temperature exceeding liquid-nitrogen temper...High-temperature superconductivity(HTSC)remains one of the most challenging and fascinating mysteries in condensed matter physics.Recently,superconductivity with transition temperature exceeding liquid-nitrogen temperature is discovered in La_(3)Ni_(2)O_(7) at high pressure,which provides a new platform to explore the unconventional HTSC.In this work,using high-resolution angle-resolved photoemission spectroscopy and ab initio calculation,we systematically investigate the electronic structures of La_(3)Ni_(2)O_(7) at ambient pressure.Our experiments are in nice agreement with ab initio calculations after considering an orbital-dependent band renormalization effect.The strong electron correlation effect pushes a flat band of d_(z^(2))𝑧2 orbital component below the Fermi level(E_(F)),which is predicted to locate right at E_(F) under high pressure.Moreover,the d_(x^(2)−y^(2)) band shows pseudogap-like behavior with suppressed spectral weight and diminished quasiparticle peak near E_(F).Our findings provide important insights into the electronic structure of La_(3)Ni_(2)O_(7),which will shed light on understanding of the unconventional superconductivity in nickelates.展开更多
Recently, giant intrinsic anomalous Hall effect(AHE) has been observed in the materials with kagome lattice.Here, we systematically investigate the influence of high pressure on the AHE in the ferromagnet LiMn_(6)Sn_(...Recently, giant intrinsic anomalous Hall effect(AHE) has been observed in the materials with kagome lattice.Here, we systematically investigate the influence of high pressure on the AHE in the ferromagnet LiMn_(6)Sn_(6) with clean Mn kagome lattice. Our in situ high-pressure Raman spectroscopy indicates that the crystal structure of LiMn_(6)Sn_(6) maintains a hexagonal phase under high pressures up to 8.51 GPa. The anomalous Hall conductivity(AHC) σ_(xy)^(A) remains around 150 Ω^(-1)·cm^(-1), dominated by the intrinsic mechanism. Combined with theoretical calculations, our results indicate that the stable AHE under pressure in Li Mn_(6)Sn_(6) originates from the robust electronic and magnetic structure.展开更多
The formation and development of pollen are among the most critical processes for reproduction and genetic diversity in the life cycle of f lowering plants.The present study found that SlMYB72 was highly expressed in ...The formation and development of pollen are among the most critical processes for reproduction and genetic diversity in the life cycle of f lowering plants.The present study found that SlMYB72 was highly expressed in the pollen and tapetum of tomato f lowers.Downregulation of SlMYB72 led to a decrease in the amounts of seeds due to abnormal pollen development compared with wild-type plants.Downregulation of SlMYB72 delayed tapetum degradation and inhibited autophagy in tomato anther.Overexpression of SlMYB72 led to abnormal pollen development and delayed tapetum degradation.Expression levels of some autophagy-related genes(ATGs)were decreased in SlMYB72 downregulated plants and increased in overexpression plants.SlMYB72 was directly bound to ACCAAC/ACCAAA motif of the SlATG7 promoter and activated its expression.Downregulation of SlATG7 inhibited the autophagy process and tapetum degradation,resulting in abnormal pollen development in tomatoes.These results indicated SlMYB72 affects the tapetum degradation and pollen development by transcriptional activation of SlATG7 and autophagy in tomato anther.The study expands the understanding of the regulation of autophagy by SlMYB72,uncovers the critical role that autophagy plays in pollen development,and provides potential candidate genes for the production of male-sterility in plants.展开更多
The thermal structure of the lower mantle plays a key role in understanding the dynamic processes of the Earth's evolution and mantle convection.Because intrinsic attenuation in the lower mantle is highly sensitiv...The thermal structure of the lower mantle plays a key role in understanding the dynamic processes of the Earth's evolution and mantle convection.Because intrinsic attenuation in the lower mantle is highly sensitive to temperature,determining of the attenuation of the lower mantle could help us determine its thermal state.We attempted to constrain the attenuation of the lower mantle by measuring the amplitude ratios of p to ScP on the vertical component and s to ScS on the tangential component at short epicentral distances for seismic wave data from deep earthquakes in Northeast China.We calculated the theoretical amplitude ratios of p to ScP and s to ScS by using ray theory and the axial-symmetric spectral element method AxiSEM,as well as by considering the effects of radiation patterns,geometrical spreading,and ScP reflection coefficients.By comparing the observed amplitude ratios with the synthetic results,we constrained the quality factors as Qα≈3,000 and Qβ≈1,300 in the lower mantle beneath Northeast China,which are much larger than those in the preliminary reference Earth model(PREM)model of Qα~800 and Qβ~312.We propose that the lower mantle beneath Northeast China is relatively colder than the average mantle,resulting in weaker intrinsic attenuation and higher velocity.We estimated the temperature of the lower mantle beneath Northeast China as approximately 300–700 K colder than the global average value.展开更多
Recently,natural van der Waals heterostructures of(MnBi2 Te4)m(Bi2 Te3)n have been theoretically predicted and experimentally shown to host tunable magnetic properties and topologically nontrivial surface states.We sy...Recently,natural van der Waals heterostructures of(MnBi2 Te4)m(Bi2 Te3)n have been theoretically predicted and experimentally shown to host tunable magnetic properties and topologically nontrivial surface states.We systematically investigate both the structural and electronic responses of MnBi2 Te4 and MnBi4 Te7 to external pressure.In addition to the suppression of antiferromagnetic order,MnBi2 Te4 is found to undergo a metalsemiconductor-metal transition upon compression.The resistivity of MnBi4 Te7 changes dramatically under high pressure and a non-monotonic evolution of p(T)is observed.The nontrivial topology is proved to persist before the structural phase transition observed in the high-pressure regime.We find that the bulk and surface states respond differently to pressure,which is consistent with the non-monotonic change of the resistivity.Interestingly,a pressure-induced amorphous state is observed in MnBi2 Te4,while two high-pressure phase transitions are revealed in MnBi4 Te7.Our combined theoretical and experimental research establishes MnBi2 Te4 and MnBi4 Te7 as highly tunable magnetic topological insulators,in which phase transitions and new ground states emerge upon compression.展开更多
Iron-based superconductor family FeX(X=S,Se,Te)has been one of the research foci in physics and material science due to their record-breaking superconducting temperature(FeSe film)and rich physical phenomena.Recently,...Iron-based superconductor family FeX(X=S,Se,Te)has been one of the research foci in physics and material science due to their record-breaking superconducting temperature(FeSe film)and rich physical phenomena.Recently,FeS,the least studied Fe X compound(due to the difficulty in synthesizing high quality macroscopic crystals)attracted much attention because of its puzzling superconducting pairing symmetry.In this work,combining scanning tunneling microscopy and angle resolved photoemission spectroscopy(ARPES)with sub-micron spatial resolution,we investigate the intrinsic electronic structures of superconducting FeS from individual single crystalline domains.Unlike FeTe or FeSe,FeS remains identical tetragonal structure from room temperature down to 5 K,and the band structures observed can be well reproduced by our ab-initio calculations.Remarkably,mixed with the 1×1 tetragonal metallic phase,we also observe the coexistence of √5×√5 reconstructed insulating phase in the crystal,which not only helps explain the unusual properties of FeS,but also demonstrates the importance of using spatially resolved experimental tools in the study of this compound.展开更多
目的研究妊娠中期贫血对新生儿体格发育指标的影响。方法选取2019年1月—2019年10月在本院分娩的单胎无其它并发症及合并症的产妇382例作为研究对象,入院待产时回顾性收集妊娠中期血常规结果,分娩后立即测量新生儿出生体重和身长,并计...目的研究妊娠中期贫血对新生儿体格发育指标的影响。方法选取2019年1月—2019年10月在本院分娩的单胎无其它并发症及合并症的产妇382例作为研究对象,入院待产时回顾性收集妊娠中期血常规结果,分娩后立即测量新生儿出生体重和身长,并计算体质指数。所有数据采用SPSS软件进行统计学分析。结果贫血组孕妇所分娩新生儿的体重(2730.47±183.94 g vs 3366.78±306.98 g)、身长(48.49±1.39 cm vs 50.64±1.37 cm)以及出生孕周(38.56±1.35周vs 39.38±0.98周)均小于对照组(均P<0.05),而两组的体质指数(BMI)无统计学差异(20.99±4.64 kg/m^(2) vs 20.98±4.52 kg/m^(2),P>0.05)。贫血孕妇早产及低体重儿的发生率均高于正常孕妇(均为10.59%vs 0%,P<0.05)。妊娠中期血红蛋白水平与出生体重及身长均存在正相关(r值分别为0.331和0.377,均P<0.05)。结论妊娠中期贫血是早产和低出生体重儿的危险因素,新生儿出生体重和身长与母体血红蛋白浓度存在正相关。展开更多
Ternary transition metal chalcogenides provide a rich platform to search and study intriguing electronic properties. Using angle-resolved photoemission spectroscopy and ab initio calculation, we investigate the electr...Ternary transition metal chalcogenides provide a rich platform to search and study intriguing electronic properties. Using angle-resolved photoemission spectroscopy and ab initio calculation, we investigate the electronic structure of Cu_(2)TlX_(2)(X = Se, Te), ternary transition metal chalcogenides with quasi-two-dimensional crystal structure. The band dispersions near the Fermi level are mainly contributed by the Te/Se p orbitals. According to our ab-initio calculation, the electronic structure changes from a semiconductor with indirect band gap in Cu_(2)TlSe_(2) to a semimetal in Cu_(2)TlTe_(2), suggesting a band-gap tunability with the composition of Se and Te. By comparing ARPES experimental data with the calculated results, we identify strong modulation of the band structure by spin–orbit coupling in the compounds. Our results provide a ternary platform to study and engineer the electronic properties of transition metal chalcogenides related to large spin–orbit coupling.展开更多
Part of the tunnel spoil can not be used for concrete due to alkali aggregate reaction(AAR).Water is an indis-pensable condition for AAR,so separating the alkali-aggregate from water is of great benefit to controlling...Part of the tunnel spoil can not be used for concrete due to alkali aggregate reaction(AAR).Water is an indis-pensable condition for AAR,so separating the alkali-aggregate from water is of great benefit to controlling the AAR.This paper investigates the modification of concrete and aggregate by hydrophobic impregnation and organic coating and then evaluates their waterproof and me chanical properties by dynamic contact angle(DCA),ultrasonic wave velocity,scanning electron microscope(SEM),nuclear magnetic resonance(NMR),and so on.For waterproofness,hydrophobic impregnation and organic coating can both improve the waterproof-ness of concrete and aggregate.The organic coating is suitable for aggregate because it wrap aggregate well.And aggregate coated by PVA can improve the interfacial transition zone(ITZ).For mechanical properties,both mate-rials will weaken the strength of the interface.Furthermore,concrete made by aggregate with organic coating shows plastic deformation and has a good correlation with the film thickness,a plastic estimation model based on flm thickness is proposed.This paper evaluates the waterproof of concrete and aggregate and finds plastic con-crete with good aggregate waterproofness which provides a new idea for the application of alkali aggregate in see-page control facilities of water conservancy projects.展开更多
As a van der Waals ferromagnet with high Curie temperature,Fe_(5-x)GeTe_(2) has attracted tremendous interests recently.Here,using high-resolution angle-resolved photoemission spectroscopy(ARPES),we systematically inv...As a van der Waals ferromagnet with high Curie temperature,Fe_(5-x)GeTe_(2) has attracted tremendous interests recently.Here,using high-resolution angle-resolved photoemission spectroscopy(ARPES),we systematically investigated the electronic structure of Fe_(5-x)GeTe_(2) crystals and its temperature evolution.Our ARPES measurement reveals two types of band structures from two different terminations with slight kz evolution.Interestingly,across the ferromagnetic transition,we observed the merging of two split bands above the Curie temperature,suggesting the band splitting due to the exchange interaction within the itinerant Stoner model.Our results provide important insights into the electronic and magnetic properties of Fe_(5-x)GeTe_(2) and the understanding of magnetism in a two-dimensional ferromagnetic system.展开更多
As a new type of quantum state of matter hosting low energy relativistic quasiparticles,Weyl semimetals(WSMs)have attracted significant attention for scientific community and potential quantum device applications.In t...As a new type of quantum state of matter hosting low energy relativistic quasiparticles,Weyl semimetals(WSMs)have attracted significant attention for scientific community and potential quantum device applications.In this study,we present a comprehensive investigation of the structural,magnetic,and transport properties of noncentrosymmetric RAl Si(R=Sm,Ce),which have been predicted to be new magnetic WSM candidates.Both samples exhibit nonsaturated magnetoresistance,with about 900%and 80%for Sm Al Si and Ce Al Si,respectively,at temperature of 1.8 K and magnetic field of 9 T.The carrier densities of Sm Al Si and Ce Al Si exhibit remarkable change around magnetic transition temperatures,signifying that the electronic states are sensitive to the magnetic ordering of rare-earth elements.At low temperatures,Sm Al Si reveals prominent Shubnikov–de Haas oscillations associated with the nontrivial Berry phase.High-pressure experiments demonstrate that the magnetic order is robust and survival under high pressure.Our results would yield valuable insights into WSM physics and potentials in applications to next-generation spintronic devices in the RAl Si(R=Sm,Ce)family.展开更多
A false alarm fault frequently appeared in antenna-servo system of the CINRAD/SA weather radar of Shanwei in the second half of 2011, so possible reasons for the false alarm fault were listed firstly using method of e...A false alarm fault frequently appeared in antenna-servo system of the CINRAD/SA weather radar of Shanwei in the second half of 2011, so possible reasons for the false alarm fault were listed firstly using method of exhaustion, and then the main reason was determined using exclusive method. That is, the fault was closely related to the signal transmission channel from the antenna mount to servo system in RDA cabinet. After ex- amining questionable nodes in the transmission channels of the alarm signal, we found that the false alarm fault might result from the interference of a burr in the temperature sensing circuit of the elevation motor. In actual operation, a filter capacitor was connected with the corresponding pin in the upper optical board to screen the interference of a burr, thereby successfully eliminating the false alarm fault in antenna-servo system of the CIN- RAD/SA radar of Shanwei.展开更多
This study was conducted to investigate potential regulatory mechanisms of feed efficiency(FE)in sheep by linking rumen microbiota with its host by the multi-omics analysis.One hundred and ninety-eight hybrid female s...This study was conducted to investigate potential regulatory mechanisms of feed efficiency(FE)in sheep by linking rumen microbiota with its host by the multi-omics analysis.One hundred and ninety-eight hybrid female sheep(initial body weight=30.88±4.57 kg;4-month-old)were selected as candidate sheep.Each test sheep was fed in an individual pen for 60 days,and the residual feed intake(RFI)was calculated.The ten candidate sheep with the highest RFI were divided into the Low-FE group,and the ten with the lowest RFI were divided into the High-FE group,all selected for sample collection.The RFI,average daily gain and average daily feed intake were highly significantly different between the two experimental groups(P<0.05).Compared with Low-FE group,the insulin-like growth factor-1 and very low-density lipoprotein in serum and the propionate in rumen significantly increased in High-FE group(P<0.01),but the acetate:propionate ratio in rumen significantly decreased in High-FE group(P=0.034).Metagenomics revealed Selenomonas ruminantium,Selenomonas sp.and Faecalibacterium prausnitzii were key bacteria,and increased abundance of the genes encoding the enzymes for cellulose degradation and production of propionate in High-FE group.The results of proteomics and section showed the rumen papilla length and expression of carbonic anhydrase and Na^(+)/K^(+)-ATPase were significantly higher in High-FE group(P<0.05).On the other hand,the acetyl-CoA content significantly increased in the liver of High-FE group(P=0.002).The relative expression levels of insulin-like growth factor-1 and apolipoprotein A4 genes were significantly up-regulated in the liver of High-FE group(P<0.05),but relative expression level of monoacylglycerol O-acyltransferase 3 gene was significantly down-regulated(P=0.037).These findings provide the mechanism by which the collaborative interaction between rumen microbiota fermentation and host uptake and metabolism of fermentation products impacts feed efficiency traits in sheep.展开更多
Sheep were domesticated in the Fertile Crescent and then spread globally,where they have been encountering various environmental conditions.The Tibetan sheep has adapted to high altitudes on the Qinghai-Tibet Plateau ...Sheep were domesticated in the Fertile Crescent and then spread globally,where they have been encountering various environmental conditions.The Tibetan sheep has adapted to high altitudes on the Qinghai-Tibet Plateau over the past 3000 years.To explore genomic variants associated with high-altitude adaptation in Tibetan sheep,we analyzed Illumina short-reads of 994 whole genomes representing∼60 sheep breeds/populations at varied altitudes,PacBio High fidelity(HiFi)reads of 13 breeds,and 96 transcriptomes from 12 sheep organs.Association testing between the inhabited altitudes and 34,298,967 variants was conducted to investigate the genetic architecture of altitude adaptation.Highly accurate HiFi reads were used to complement the current ovine reference assembly at the most significantly associatedβ-globin locus and to validate the presence of two haplotypes A and B among 13 sheep breeds.The haplotype A carried two homologous gene clusters:(1)HBE1,HBE2,HBB-like,and HBBC,and(2)HBE1-like,HBE2-like,HBB-like,and HBB;while the haplotype B lacked the first cluster.The high-altitude sheep showed highly frequent or nearly fixed haplotype A,while the low-altitude sheep dominated by haplotype B.We further demonstrated that sheep with haplotype A had an increased hemoglobin–O_(2) affinity compared with those carrying haplotype B.Another highly associated genomic region contained the EGLN1 gene which showed varied expression between high-altitude and low-altitude sheep.Our results provide evidence that the rapid adaptive evolution of advantageous alleles play an important role in facilitating the environmental adaptation of Tibetan sheep.展开更多
In this work,mechanical alloying of the alternating stacked pure Al and Zn thin foils was accomplished via high-pressure torsion(HPT).In the alloyed Al-Zn system,an exotic phase transformation from hexagonal close-pac...In this work,mechanical alloying of the alternating stacked pure Al and Zn thin foils was accomplished via high-pressure torsion(HPT).In the alloyed Al-Zn system,an exotic phase transformation from hexagonal close-packed(HCP)to face-centered cubic(FCC)was identified.The atomic-scale evolution process and underlying mechanism of phase transformation down to atomic scale are provided by molecular dynamics simulation and high-resolution transmission electron microscopy.The HCP→FCC phase transformation was attributed to the sliding of Shockley partial dislocations generated at the Al-Zn grain boundaries,which resulted in an[2110][011]and(0001)/(111)orientation relationship between the two phases.This work provides a new approach for the in-depth study of the solid phase transformation of Al-Zn alloys and also shed lights on understanding the mechanical properties of the HPT processed Al-Zn alloys.展开更多
Sheep is an important livestock species raised globally to produce meat,milk,wool,and other by-products.During the Neolithic Revolution,sheep were domesticated in the Fertile Crescent of Southwest Asia around 10,000 y...Sheep is an important livestock species raised globally to produce meat,milk,wool,and other by-products.During the Neolithic Revolution,sheep were domesticated in the Fertile Crescent of Southwest Asia around 10,000 years ago(Chessa et al.,2009).展开更多
Using methods such as questionnaire survey and literature review,a survey was conducted on the professional development of physical education teachers in Huaiji County under the background of the new curriculum standa...Using methods such as questionnaire survey and literature review,a survey was conducted on the professional development of physical education teachers in Huaiji County under the background of the new curriculum standards.The research results found that physical education teachers in Huaiji County have a relatively good distribution structure in terms of teaching experience,age,and education level,but the gender ratio and professional title ratio need to be improved.In terms of professional competence,teachers have shown good performance in teaching implementation ability,but there is still room for improvement in teaching design ability.A certain proportion of teachers still express dissatisfaction with professional title promotion,hardware configuration satisfaction,salary and benefits,and school reward mechanisms.Based on this,this study proposes some measures to improve the professional development level of county-level physical education teachers,such as enhancing teachers teaching design and implementation abilities,strengthening the cultivation of technical action demonstration abilities,improving hardware configuration satisfaction and teaching effectiveness reflection level,strengthening guidance and support for teachers professional development,and enhancing the promotion and implementation of post employment training.展开更多
基金supported by the National Key R&D Program of China(Grant Nos.2022YFA1403100 and 2022YFA1403200)the National Natural Science Foundation of China(Grant Nos.12275148,12004270,and 52272265)+1 种基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2022B1515120020)support from Tsinghua University Initiative Scientific Research Program.
文摘High-temperature superconductivity(HTSC)remains one of the most challenging and fascinating mysteries in condensed matter physics.Recently,superconductivity with transition temperature exceeding liquid-nitrogen temperature is discovered in La_(3)Ni_(2)O_(7) at high pressure,which provides a new platform to explore the unconventional HTSC.In this work,using high-resolution angle-resolved photoemission spectroscopy and ab initio calculation,we systematically investigate the electronic structures of La_(3)Ni_(2)O_(7) at ambient pressure.Our experiments are in nice agreement with ab initio calculations after considering an orbital-dependent band renormalization effect.The strong electron correlation effect pushes a flat band of d_(z^(2))𝑧2 orbital component below the Fermi level(E_(F)),which is predicted to locate right at E_(F) under high pressure.Moreover,the d_(x^(2)−y^(2)) band shows pseudogap-like behavior with suppressed spectral weight and diminished quasiparticle peak near E_(F).Our findings provide important insights into the electronic structure of La_(3)Ni_(2)O_(7),which will shed light on understanding of the unconventional superconductivity in nickelates.
基金supported by the National Natural Science Foundation of China (Grant No. 52272265)the National Key R&D Program of China (Grant Nos. 2023YFA1607400 and 2018YFA0704300)+4 种基金the support from the National Natural Science Foundation of China (Grant Nos. 52271016 and 52188101)the support from Analytical Instrumentation Center (# SPST-AIC10112914), SPST, Shanghai Tech Universitythe European Research Council (ERC Advanced Grant No. 742068 ‘TOPMAT’)the DFG through SFB 1143 (Project ID 247310070)the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter ct.qmat (EXC2147,Project ID 390858490)。
文摘Recently, giant intrinsic anomalous Hall effect(AHE) has been observed in the materials with kagome lattice.Here, we systematically investigate the influence of high pressure on the AHE in the ferromagnet LiMn_(6)Sn_(6) with clean Mn kagome lattice. Our in situ high-pressure Raman spectroscopy indicates that the crystal structure of LiMn_(6)Sn_(6) maintains a hexagonal phase under high pressures up to 8.51 GPa. The anomalous Hall conductivity(AHC) σ_(xy)^(A) remains around 150 Ω^(-1)·cm^(-1), dominated by the intrinsic mechanism. Combined with theoretical calculations, our results indicate that the stable AHE under pressure in Li Mn_(6)Sn_(6) originates from the robust electronic and magnetic structure.
基金supported by the National Natural Science Foundation of China(32172596)the Technology Innovation and Application Development Project in Chongqing(cstc2021jscxcylhX0115)+3 种基金the Chongqing Talents Innovation Leading Talents Project(cstc2022ycjh-bgzxm0018)the Tianfu Scholar Program of Sichuan Province(Department of Human Resources and Social Security of Sichuan Province 2021-58)d the Fundamental Research Funds for the Central Universities(2021CDJZYJH002)The Graduate Research and Innovation Foundation of Chongqing,China(CYB22048).
文摘The formation and development of pollen are among the most critical processes for reproduction and genetic diversity in the life cycle of f lowering plants.The present study found that SlMYB72 was highly expressed in the pollen and tapetum of tomato f lowers.Downregulation of SlMYB72 led to a decrease in the amounts of seeds due to abnormal pollen development compared with wild-type plants.Downregulation of SlMYB72 delayed tapetum degradation and inhibited autophagy in tomato anther.Overexpression of SlMYB72 led to abnormal pollen development and delayed tapetum degradation.Expression levels of some autophagy-related genes(ATGs)were decreased in SlMYB72 downregulated plants and increased in overexpression plants.SlMYB72 was directly bound to ACCAAC/ACCAAA motif of the SlATG7 promoter and activated its expression.Downregulation of SlATG7 inhibited the autophagy process and tapetum degradation,resulting in abnormal pollen development in tomatoes.These results indicated SlMYB72 affects the tapetum degradation and pollen development by transcriptional activation of SlATG7 and autophagy in tomato anther.The study expands the understanding of the regulation of autophagy by SlMYB72,uncovers the critical role that autophagy plays in pollen development,and provides potential candidate genes for the production of male-sterility in plants.
基金supported by funding from the National Natural Science Foundation of China (grant no. 41904061)China Postdoctoral Science Foundation (grant no. 2018M640742)
文摘The thermal structure of the lower mantle plays a key role in understanding the dynamic processes of the Earth's evolution and mantle convection.Because intrinsic attenuation in the lower mantle is highly sensitive to temperature,determining of the attenuation of the lower mantle could help us determine its thermal state.We attempted to constrain the attenuation of the lower mantle by measuring the amplitude ratios of p to ScP on the vertical component and s to ScS on the tangential component at short epicentral distances for seismic wave data from deep earthquakes in Northeast China.We calculated the theoretical amplitude ratios of p to ScP and s to ScS by using ray theory and the axial-symmetric spectral element method AxiSEM,as well as by considering the effects of radiation patterns,geometrical spreading,and ScP reflection coefficients.By comparing the observed amplitude ratios with the synthetic results,we constrained the quality factors as Qα≈3,000 and Qβ≈1,300 in the lower mantle beneath Northeast China,which are much larger than those in the preliminary reference Earth model(PREM)model of Qα~800 and Qβ~312.We propose that the lower mantle beneath Northeast China is relatively colder than the average mantle,resulting in weaker intrinsic attenuation and higher velocity.We estimated the temperature of the lower mantle beneath Northeast China as approximately 300–700 K colder than the global average value.
基金Supported by the National Key Research and Development Program of China under Grant Nos.2018YFA0704300 and2017YFE0131300the National Natural Science Foundation of China under Grant Nos.U1932217,11974246,11874263 and10225417+1 种基金the Natural Science Foundation of Shanghai under Grant No.19ZR1477300the support from Analytical Instrumentation Center(SPST-AIC10112914),SPST,ShanghaiTech Universitysupported by Collaborative Research Project of Materials and Structures Laboratory,Tokyo Institute of Technology,Japan,Part of this research is supported by COMPRES(NSF Cooperative Agreement EAR-1661511)。
文摘Recently,natural van der Waals heterostructures of(MnBi2 Te4)m(Bi2 Te3)n have been theoretically predicted and experimentally shown to host tunable magnetic properties and topologically nontrivial surface states.We systematically investigate both the structural and electronic responses of MnBi2 Te4 and MnBi4 Te7 to external pressure.In addition to the suppression of antiferromagnetic order,MnBi2 Te4 is found to undergo a metalsemiconductor-metal transition upon compression.The resistivity of MnBi4 Te7 changes dramatically under high pressure and a non-monotonic evolution of p(T)is observed.The nontrivial topology is proved to persist before the structural phase transition observed in the high-pressure regime.We find that the bulk and surface states respond differently to pressure,which is consistent with the non-monotonic change of the resistivity.Interestingly,a pressure-induced amorphous state is observed in MnBi2 Te4,while two high-pressure phase transitions are revealed in MnBi4 Te7.Our combined theoretical and experimental research establishes MnBi2 Te4 and MnBi4 Te7 as highly tunable magnetic topological insulators,in which phase transitions and new ground states emerge upon compression.
基金Project supported by CAS-Shanghai Science Research Center,China(Grant No.CAS-SSRC-YH-2015-01)the National Key R&D Program of China(Grant No.2017YFA0305400)+4 种基金the National Natural Science Foundation of China(Grant Nos.11674229,11227902,and 11604207)the EPSRC Platform Grant(Grant No.EP/M020517/1)Hefei Science Center,Chinese Academy of Sciences(Grant No.2015HSC-UE013)Science and Technology Commission of Shanghai Municipality,China(Grant No.14520722100)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB04040200)。
文摘Iron-based superconductor family FeX(X=S,Se,Te)has been one of the research foci in physics and material science due to their record-breaking superconducting temperature(FeSe film)and rich physical phenomena.Recently,FeS,the least studied Fe X compound(due to the difficulty in synthesizing high quality macroscopic crystals)attracted much attention because of its puzzling superconducting pairing symmetry.In this work,combining scanning tunneling microscopy and angle resolved photoemission spectroscopy(ARPES)with sub-micron spatial resolution,we investigate the intrinsic electronic structures of superconducting FeS from individual single crystalline domains.Unlike FeTe or FeSe,FeS remains identical tetragonal structure from room temperature down to 5 K,and the band structures observed can be well reproduced by our ab-initio calculations.Remarkably,mixed with the 1×1 tetragonal metallic phase,we also observe the coexistence of √5×√5 reconstructed insulating phase in the crystal,which not only helps explain the unusual properties of FeS,but also demonstrates the importance of using spatially resolved experimental tools in the study of this compound.
文摘目的研究妊娠中期贫血对新生儿体格发育指标的影响。方法选取2019年1月—2019年10月在本院分娩的单胎无其它并发症及合并症的产妇382例作为研究对象,入院待产时回顾性收集妊娠中期血常规结果,分娩后立即测量新生儿出生体重和身长,并计算体质指数。所有数据采用SPSS软件进行统计学分析。结果贫血组孕妇所分娩新生儿的体重(2730.47±183.94 g vs 3366.78±306.98 g)、身长(48.49±1.39 cm vs 50.64±1.37 cm)以及出生孕周(38.56±1.35周vs 39.38±0.98周)均小于对照组(均P<0.05),而两组的体质指数(BMI)无统计学差异(20.99±4.64 kg/m^(2) vs 20.98±4.52 kg/m^(2),P>0.05)。贫血孕妇早产及低体重儿的发生率均高于正常孕妇(均为10.59%vs 0%,P<0.05)。妊娠中期血红蛋白水平与出生体重及身长均存在正相关(r值分别为0.331和0.377,均P<0.05)。结论妊娠中期贫血是早产和低出生体重儿的危险因素,新生儿出生体重和身长与母体血红蛋白浓度存在正相关。
基金supported by the National Natural Science Foundation of China (Grant No. 11774190)。
文摘Ternary transition metal chalcogenides provide a rich platform to search and study intriguing electronic properties. Using angle-resolved photoemission spectroscopy and ab initio calculation, we investigate the electronic structure of Cu_(2)TlX_(2)(X = Se, Te), ternary transition metal chalcogenides with quasi-two-dimensional crystal structure. The band dispersions near the Fermi level are mainly contributed by the Te/Se p orbitals. According to our ab-initio calculation, the electronic structure changes from a semiconductor with indirect band gap in Cu_(2)TlSe_(2) to a semimetal in Cu_(2)TlTe_(2), suggesting a band-gap tunability with the composition of Se and Te. By comparing ARPES experimental data with the calculated results, we identify strong modulation of the band structure by spin–orbit coupling in the compounds. Our results provide a ternary platform to study and engineer the electronic properties of transition metal chalcogenides related to large spin–orbit coupling.
基金This work was financially supported by the National Natural Science Foundation of China(52108358)China Postdoctoral Science Foundation(2021M693110)Special Research Associate Project of Chinese Academy of Sciences(E1K2180).
文摘Part of the tunnel spoil can not be used for concrete due to alkali aggregate reaction(AAR).Water is an indis-pensable condition for AAR,so separating the alkali-aggregate from water is of great benefit to controlling the AAR.This paper investigates the modification of concrete and aggregate by hydrophobic impregnation and organic coating and then evaluates their waterproof and me chanical properties by dynamic contact angle(DCA),ultrasonic wave velocity,scanning electron microscope(SEM),nuclear magnetic resonance(NMR),and so on.For waterproofness,hydrophobic impregnation and organic coating can both improve the waterproof-ness of concrete and aggregate.The organic coating is suitable for aggregate because it wrap aggregate well.And aggregate coated by PVA can improve the interfacial transition zone(ITZ).For mechanical properties,both mate-rials will weaken the strength of the interface.Furthermore,concrete made by aggregate with organic coating shows plastic deformation and has a good correlation with the film thickness,a plastic estimation model based on flm thickness is proposed.This paper evaluates the waterproof of concrete and aggregate and finds plastic con-crete with good aggregate waterproofness which provides a new idea for the application of alkali aggregate in see-page control facilities of water conservancy projects.
基金the National Key R&D Program of China(Grant No.2017YFA0305400)。
文摘As a van der Waals ferromagnet with high Curie temperature,Fe_(5-x)GeTe_(2) has attracted tremendous interests recently.Here,using high-resolution angle-resolved photoemission spectroscopy(ARPES),we systematically investigated the electronic structure of Fe_(5-x)GeTe_(2) crystals and its temperature evolution.Our ARPES measurement reveals two types of band structures from two different terminations with slight kz evolution.Interestingly,across the ferromagnetic transition,we observed the merging of two split bands above the Curie temperature,suggesting the band splitting due to the exchange interaction within the itinerant Stoner model.Our results provide important insights into the electronic and magnetic properties of Fe_(5-x)GeTe_(2) and the understanding of magnetism in a two-dimensional ferromagnetic system.
基金supported by the National Key R&D Program of China(Grant Nos.2018YFA0704300 and 2017YFB0503302)the National Natural Science Foundation of China(Grant Nos.U1932217,11974246,12004252,61771234,and 12004251)+6 种基金the Natural Science Foundation of Shanghai(Grant Nos.19ZR1477300 and 20ZR1436100)the Science and Technology Commission of Shanghai Municipality(Grant Nos.19JC1413900 and YDZX20203100001438)the Shanghai Science and Technology Plan(Grant No.21DZ2260400),the Shanghai Sailing Program(Grant No.21YF1429200)the Interdisciplinary Program of Wuhan National High Magnetic Field Center(Grant No.WHMFC202124)the Beijing National Laboratory for Condensed Matter Physicsthe support from Analytical Instrumentation Center(Grant No.SPST-AIC10112914)Centre for High-resolution Electron Microscopy(ChEM)(Grant No.EM02161943),SPST,Shanghai Tech University。
文摘As a new type of quantum state of matter hosting low energy relativistic quasiparticles,Weyl semimetals(WSMs)have attracted significant attention for scientific community and potential quantum device applications.In this study,we present a comprehensive investigation of the structural,magnetic,and transport properties of noncentrosymmetric RAl Si(R=Sm,Ce),which have been predicted to be new magnetic WSM candidates.Both samples exhibit nonsaturated magnetoresistance,with about 900%and 80%for Sm Al Si and Ce Al Si,respectively,at temperature of 1.8 K and magnetic field of 9 T.The carrier densities of Sm Al Si and Ce Al Si exhibit remarkable change around magnetic transition temperatures,signifying that the electronic states are sensitive to the magnetic ordering of rare-earth elements.At low temperatures,Sm Al Si reveals prominent Shubnikov–de Haas oscillations associated with the nontrivial Berry phase.High-pressure experiments demonstrate that the magnetic order is robust and survival under high pressure.Our results would yield valuable insights into WSM physics and potentials in applications to next-generation spintronic devices in the RAl Si(R=Sm,Ce)family.
文摘A false alarm fault frequently appeared in antenna-servo system of the CINRAD/SA weather radar of Shanwei in the second half of 2011, so possible reasons for the false alarm fault were listed firstly using method of exhaustion, and then the main reason was determined using exclusive method. That is, the fault was closely related to the signal transmission channel from the antenna mount to servo system in RDA cabinet. After ex- amining questionable nodes in the transmission channels of the alarm signal, we found that the false alarm fault might result from the interference of a burr in the temperature sensing circuit of the elevation motor. In actual operation, a filter capacitor was connected with the corresponding pin in the upper optical board to screen the interference of a burr, thereby successfully eliminating the false alarm fault in antenna-servo system of the CIN- RAD/SA radar of Shanwei.
基金supported by the National Key Research and Develo pment Program of China (2022YFD1300201,2021YFD1600704)the Key Research and Development Program of Shaanxi Province (2021ZDLNY05-02)the China Agriculture Research System (CARS-39-12).
文摘This study was conducted to investigate potential regulatory mechanisms of feed efficiency(FE)in sheep by linking rumen microbiota with its host by the multi-omics analysis.One hundred and ninety-eight hybrid female sheep(initial body weight=30.88±4.57 kg;4-month-old)were selected as candidate sheep.Each test sheep was fed in an individual pen for 60 days,and the residual feed intake(RFI)was calculated.The ten candidate sheep with the highest RFI were divided into the Low-FE group,and the ten with the lowest RFI were divided into the High-FE group,all selected for sample collection.The RFI,average daily gain and average daily feed intake were highly significantly different between the two experimental groups(P<0.05).Compared with Low-FE group,the insulin-like growth factor-1 and very low-density lipoprotein in serum and the propionate in rumen significantly increased in High-FE group(P<0.01),but the acetate:propionate ratio in rumen significantly decreased in High-FE group(P=0.034).Metagenomics revealed Selenomonas ruminantium,Selenomonas sp.and Faecalibacterium prausnitzii were key bacteria,and increased abundance of the genes encoding the enzymes for cellulose degradation and production of propionate in High-FE group.The results of proteomics and section showed the rumen papilla length and expression of carbonic anhydrase and Na^(+)/K^(+)-ATPase were significantly higher in High-FE group(P<0.05).On the other hand,the acetyl-CoA content significantly increased in the liver of High-FE group(P=0.002).The relative expression levels of insulin-like growth factor-1 and apolipoprotein A4 genes were significantly up-regulated in the liver of High-FE group(P<0.05),but relative expression level of monoacylglycerol O-acyltransferase 3 gene was significantly down-regulated(P=0.037).These findings provide the mechanism by which the collaborative interaction between rumen microbiota fermentation and host uptake and metabolism of fermentation products impacts feed efficiency traits in sheep.
基金supported by the Tibetan R&D Program,China(Grant No.XZ202101ZD0001N)the China Agriculture Research System(Grant No.CARS-39)the National Natural Science Foundation of China(Grant Nos.31900313,32161143010,and 31972526).
文摘Sheep were domesticated in the Fertile Crescent and then spread globally,where they have been encountering various environmental conditions.The Tibetan sheep has adapted to high altitudes on the Qinghai-Tibet Plateau over the past 3000 years.To explore genomic variants associated with high-altitude adaptation in Tibetan sheep,we analyzed Illumina short-reads of 994 whole genomes representing∼60 sheep breeds/populations at varied altitudes,PacBio High fidelity(HiFi)reads of 13 breeds,and 96 transcriptomes from 12 sheep organs.Association testing between the inhabited altitudes and 34,298,967 variants was conducted to investigate the genetic architecture of altitude adaptation.Highly accurate HiFi reads were used to complement the current ovine reference assembly at the most significantly associatedβ-globin locus and to validate the presence of two haplotypes A and B among 13 sheep breeds.The haplotype A carried two homologous gene clusters:(1)HBE1,HBE2,HBB-like,and HBBC,and(2)HBE1-like,HBE2-like,HBB-like,and HBB;while the haplotype B lacked the first cluster.The high-altitude sheep showed highly frequent or nearly fixed haplotype A,while the low-altitude sheep dominated by haplotype B.We further demonstrated that sheep with haplotype A had an increased hemoglobin–O_(2) affinity compared with those carrying haplotype B.Another highly associated genomic region contained the EGLN1 gene which showed varied expression between high-altitude and low-altitude sheep.Our results provide evidence that the rapid adaptive evolution of advantageous alleles play an important role in facilitating the environmental adaptation of Tibetan sheep.
基金supported by the National Key R&D Program of China(2017YFA0305400 and 2019YFA0704900)Chinese Academy of Sciences-Shanghai Science Research Center(CAS-SSRC-YH2015-01)+9 种基金Double First-Class Initiative Fund of Shanghai Tech Universitythe support from the Engineering and Physical Sciences Research Council Platform Grant(EP/M020517/1)the Major Research Plan of the National Natural Science Foundation of China(NSFC,92065201)Shanghai Municipal Science and Technology Major Project(2018SHZDZX02)the support from the NSFC(52088101 and 11974394)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB33000000)the support from Shanghai Committee of Science and Technology(22ZR1441800)Shanghai-XFEL Beamline Project(SBP)(31011505505885920161A2101001)the support from the NSFC(12004248)and the support from the NSFC(12104304)Shanghai Sailing Program(20YF1430500)。
基金supported by the National Natural Science Foundation of China(12004252,52272265,U1932217,11974246,52072400,52025025,and 92065109)the National Key R&D Program of China(2018YFA0704300,2021YFA1401800,2018YFE0202601,2020YFA0308800,and 2022YFA1403400)+2 种基金Shanghai Science and Technology Plan(21DZ2260400)Beijing Natural Science Foundation(Z190010,Z210006,and Z190006)the support from the Analytical Instrumentation Center(#SPST-AIC10112914),School of Physical Science and Technology(SPST),ShanghaiTech University。
基金funded by the National Natural Science Foundation of China(Grant Nos.51905215,U22A20187)the Major Scientific and Technological Innovation Project of Shandong Province of China(Grant No.2019JZZY020111).
文摘In this work,mechanical alloying of the alternating stacked pure Al and Zn thin foils was accomplished via high-pressure torsion(HPT).In the alloyed Al-Zn system,an exotic phase transformation from hexagonal close-packed(HCP)to face-centered cubic(FCC)was identified.The atomic-scale evolution process and underlying mechanism of phase transformation down to atomic scale are provided by molecular dynamics simulation and high-resolution transmission electron microscopy.The HCP→FCC phase transformation was attributed to the sliding of Shockley partial dislocations generated at the Al-Zn grain boundaries,which resulted in an[2110][011]and(0001)/(111)orientation relationship between the two phases.This work provides a new approach for the in-depth study of the solid phase transformation of Al-Zn alloys and also shed lights on understanding the mechanical properties of the HPT processed Al-Zn alloys.
文摘Sheep is an important livestock species raised globally to produce meat,milk,wool,and other by-products.During the Neolithic Revolution,sheep were domesticated in the Fertile Crescent of Southwest Asia around 10,000 years ago(Chessa et al.,2009).
基金Key Education Research Project of Zhaoqing Education Development Research Institute in 2023(ZQJYY2023016)Key Education Research Project of Zhaoqing Education Development Research Institute in 2016(ZQJYY2016003).
文摘Using methods such as questionnaire survey and literature review,a survey was conducted on the professional development of physical education teachers in Huaiji County under the background of the new curriculum standards.The research results found that physical education teachers in Huaiji County have a relatively good distribution structure in terms of teaching experience,age,and education level,but the gender ratio and professional title ratio need to be improved.In terms of professional competence,teachers have shown good performance in teaching implementation ability,but there is still room for improvement in teaching design ability.A certain proportion of teachers still express dissatisfaction with professional title promotion,hardware configuration satisfaction,salary and benefits,and school reward mechanisms.Based on this,this study proposes some measures to improve the professional development level of county-level physical education teachers,such as enhancing teachers teaching design and implementation abilities,strengthening the cultivation of technical action demonstration abilities,improving hardware configuration satisfaction and teaching effectiveness reflection level,strengthening guidance and support for teachers professional development,and enhancing the promotion and implementation of post employment training.