[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spat...[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spatial resolution, KRD control projects in Disi River basin in Puan County were monitored, that is, information of the project construction in the study area was extracted using supervised classification and hu- man-computer interactive interpretation, and the monitoring results were testified with the aid of GPS. [Result] It was feasible to monitor KRD con- trol projects in Disi River basin based on remote sensing images with medium and high resolution, and the monitoring accuracy was satisfactory, reaching above 80% or 90%, so the method is worthy of popularizing. [ Conclusion] Remote sensing images with medium and high resolution can be used to monitor other KRD control Droiects.展开更多
Karst rocky desertification is a phenomenon of land degradation as a result of affection by the interaction of natural and human factors.In the past,in the rocky desertification areas,supervised classification and uns...Karst rocky desertification is a phenomenon of land degradation as a result of affection by the interaction of natural and human factors.In the past,in the rocky desertification areas,supervised classification and unsupervised classification are often used to classify the remote sensing image.But they only use pixel brightness characteristics to classify it.So the classification accuracy is low and can not meet the needs of practical application.Decision tree classification is a new technology for remote sensing image classification.In this study,we select the rocky desertification areas Kaizuo Township as a case study,use the ASTER image data,DEM and lithology data,by extracting the normalized difference vegetation index,ratio vegetation index,terrain slope and other data to establish classification rules to build decision trees.In the ENVI software support,we access the classification images.By calculating the classification accuracy and kappa coefficient,we find that better classification results can be obtained,desertification information can be extracted automatically and if more remote sensing image bands used,higher resolution DEM employed and less errors data reduced during processing,classification accuracy can be improve further.展开更多
基金Supported by the Key Science and Technology Projects of Guizhou Province,China[(2007)3017,(2008)3022]Major Special Project of Guizhou Province,China(2006-6006-2)
文摘[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spatial resolution, KRD control projects in Disi River basin in Puan County were monitored, that is, information of the project construction in the study area was extracted using supervised classification and hu- man-computer interactive interpretation, and the monitoring results were testified with the aid of GPS. [Result] It was feasible to monitor KRD con- trol projects in Disi River basin based on remote sensing images with medium and high resolution, and the monitoring accuracy was satisfactory, reaching above 80% or 90%, so the method is worthy of popularizing. [ Conclusion] Remote sensing images with medium and high resolution can be used to monitor other KRD control Droiects.
文摘Karst rocky desertification is a phenomenon of land degradation as a result of affection by the interaction of natural and human factors.In the past,in the rocky desertification areas,supervised classification and unsupervised classification are often used to classify the remote sensing image.But they only use pixel brightness characteristics to classify it.So the classification accuracy is low and can not meet the needs of practical application.Decision tree classification is a new technology for remote sensing image classification.In this study,we select the rocky desertification areas Kaizuo Township as a case study,use the ASTER image data,DEM and lithology data,by extracting the normalized difference vegetation index,ratio vegetation index,terrain slope and other data to establish classification rules to build decision trees.In the ENVI software support,we access the classification images.By calculating the classification accuracy and kappa coefficient,we find that better classification results can be obtained,desertification information can be extracted automatically and if more remote sensing image bands used,higher resolution DEM employed and less errors data reduced during processing,classification accuracy can be improve further.