The WHO estimates that almost500 million people world-wide are chronically infected with hepatitis B and C viruses(HBV and HCV)and human immune deficiency virus(HIV).During the recent years,significant progress was ma...The WHO estimates that almost500 million people world-wide are chronically infected with hepatitis B and C viruses(HBV and HCV)and human immune deficiency virus(HIV).During the recent years,significant progress was made in treatment of chronic infection with HBV,HCV,and HIV,mainly based on directly antiviral agents.However,展开更多
New threats posed by the emerging circulating variants of SARS-CoV-2 highlight the need to find conserved neutralizing epitopes for therapeutic antibodies and efficient vaccine design.Here,we identified a receptorbind...New threats posed by the emerging circulating variants of SARS-CoV-2 highlight the need to find conserved neutralizing epitopes for therapeutic antibodies and efficient vaccine design.Here,we identified a receptorbinding domain(RBD)-binding antibody,XG014,which potently neutralizesβ-coronavirus lineage B(β-CoV-B),including SARS-CoV-2,its circulating variants,SARSCoV and bat SARSr-CoV WIV1.Interestingly,antibody family members competing with XG014 binding show reduced levels of cross-reactivity and induce antibodydependent SARS-CoV-2 spike(S)protein-mediated cellcell fusion,suggesting a unique mode of recognition by XG014.Structural analyses reveal that XG014 recognizes a conserved epitope outside the ACE2 binding site and completely locks RBD in the non-functional“down”conformation,while its family member XG005 directly competes with ACE2 binding and position the RBD“up”.Single administration of XG014 is effective in protection against and therapy of SARS-CoV-2 infection in vivo.Our findings suggest the potential to develop XG014 as pan-β-CoV-B therapeutics and the importance of the XG014 conserved antigenic epitope for designing broadly protective vaccines againstβ-CoV-B and newly emerging SARS-CoV-2 variants of concern.展开更多
Chronic hepatitis B is a major health burden worldwide. In addition to the recent progress in antiviral treatment, therapeutic vaccination is a promising new strategy for the control of chronic hepatitis B. On the bas...Chronic hepatitis B is a major health burden worldwide. In addition to the recent progress in antiviral treatment, therapeutic vaccination is a promising new strategy for the control of chronic hepatitis B. On the basis of the major specific and non-specific immune dysregulations and defects in chronic hepatitis B patients, this paper presents the peptide and protein-based, DNA-based, cell-based, and antigen-antibody-based therapeutic vaccines, which have undergone clinical trials. The advantages, disadvantages, and future perspectives for these therapeutic vaccines are discussed.展开更多
Advancements in high-throughput sequencing(HTS)of antibody repertoires(Ig-Seq)have unprecedentedly improved our ability to characterize the antibody repertoires on a large scale.However,currently,only a few studies ex...Advancements in high-throughput sequencing(HTS)of antibody repertoires(Ig-Seq)have unprecedentedly improved our ability to characterize the antibody repertoires on a large scale.However,currently,only a few studies explored the influence of chronic HIV-1 infection on human antibody repertoires and many of them reached contradictory conclusions,possibly limited by inadequate sequencing depth and throughput.To better understand how HIV-1 infection would impact humoral immune system,in this study,we systematically analyzed the differences between the IgM(HIV-IgM)and IgG(HIV-IgG)heavy chain repertoires of HIV-1 infected patients,as well as between antibody repertoires of HIV-1 patients and healthy donors(HH).Notably,the public unique clones accounted for only a negligible proportion between the HIV-IgM and HIV-IgG repertoires libraries,and the diversity of unique clones in HIV-IgG remarkably reduced.In aspect of somatic mutation rates of CDR1 and CDR2,the HIV-IgG repertoire was higher than HIV-IgM.Besides,the average length of CDR3 region in HIV-IgM was significant longer than that in the HH repertoire,presumably caused by the great number of novel VDJ rearrangement patterns,especially a massive use of IGHJ6.Moreover,some of the B cell clonotypes had numerous clones,and somatic variants were detected within the clonotype lineage in HIV-IgG,indicating HIV-1 neutralizing activities.The in-depth characterization of HIV-IgG and HIV-IgM repertoires enriches our knowledge in the profound effect of HIV-1 infection on human antibody repertoires and may have practical value for the discovery of therapeutic antibodies.展开更多
文摘The WHO estimates that almost500 million people world-wide are chronically infected with hepatitis B and C viruses(HBV and HCV)and human immune deficiency virus(HIV).During the recent years,significant progress was made in treatment of chronic infection with HBV,HCV,and HIV,mainly based on directly antiviral agents.However,
基金the National Natural Science Foundation of China(81822045 and 82041036 to L.L.,81900729 to L.S.,31872730 and 32070947 to Q.W.)the Program of Shanghai Academic/Technology Research Leader(20XD1420300 to L.L.).
文摘New threats posed by the emerging circulating variants of SARS-CoV-2 highlight the need to find conserved neutralizing epitopes for therapeutic antibodies and efficient vaccine design.Here,we identified a receptorbinding domain(RBD)-binding antibody,XG014,which potently neutralizesβ-coronavirus lineage B(β-CoV-B),including SARS-CoV-2,its circulating variants,SARSCoV and bat SARSr-CoV WIV1.Interestingly,antibody family members competing with XG014 binding show reduced levels of cross-reactivity and induce antibodydependent SARS-CoV-2 spike(S)protein-mediated cellcell fusion,suggesting a unique mode of recognition by XG014.Structural analyses reveal that XG014 recognizes a conserved epitope outside the ACE2 binding site and completely locks RBD in the non-functional“down”conformation,while its family member XG005 directly competes with ACE2 binding and position the RBD“up”.Single administration of XG014 is effective in protection against and therapy of SARS-CoV-2 infection in vivo.Our findings suggest the potential to develop XG014 as pan-β-CoV-B therapeutics and the importance of the XG014 conserved antigenic epitope for designing broadly protective vaccines againstβ-CoV-B and newly emerging SARS-CoV-2 variants of concern.
文摘Chronic hepatitis B is a major health burden worldwide. In addition to the recent progress in antiviral treatment, therapeutic vaccination is a promising new strategy for the control of chronic hepatitis B. On the basis of the major specific and non-specific immune dysregulations and defects in chronic hepatitis B patients, this paper presents the peptide and protein-based, DNA-based, cell-based, and antigen-antibody-based therapeutic vaccines, which have undergone clinical trials. The advantages, disadvantages, and future perspectives for these therapeutic vaccines are discussed.
基金supported by grants from the National Key R&D Program of China(2019YFA0904400)National Natural Science Foundation of China(81822027,81630090,81902108)Science and Technology Commission of Shanghai Municipality(20DZ2254600,20DZ2261200)。
文摘Advancements in high-throughput sequencing(HTS)of antibody repertoires(Ig-Seq)have unprecedentedly improved our ability to characterize the antibody repertoires on a large scale.However,currently,only a few studies explored the influence of chronic HIV-1 infection on human antibody repertoires and many of them reached contradictory conclusions,possibly limited by inadequate sequencing depth and throughput.To better understand how HIV-1 infection would impact humoral immune system,in this study,we systematically analyzed the differences between the IgM(HIV-IgM)and IgG(HIV-IgG)heavy chain repertoires of HIV-1 infected patients,as well as between antibody repertoires of HIV-1 patients and healthy donors(HH).Notably,the public unique clones accounted for only a negligible proportion between the HIV-IgM and HIV-IgG repertoires libraries,and the diversity of unique clones in HIV-IgG remarkably reduced.In aspect of somatic mutation rates of CDR1 and CDR2,the HIV-IgG repertoire was higher than HIV-IgM.Besides,the average length of CDR3 region in HIV-IgM was significant longer than that in the HH repertoire,presumably caused by the great number of novel VDJ rearrangement patterns,especially a massive use of IGHJ6.Moreover,some of the B cell clonotypes had numerous clones,and somatic variants were detected within the clonotype lineage in HIV-IgG,indicating HIV-1 neutralizing activities.The in-depth characterization of HIV-IgG and HIV-IgM repertoires enriches our knowledge in the profound effect of HIV-1 infection on human antibody repertoires and may have practical value for the discovery of therapeutic antibodies.