期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
用于生物医学应用的基于微藻的生物杂化材料的合理设计和开发
1
作者 Zhongyang Zhang yumeng chen +4 位作者 Lasse Hyldgaard Klausen Sebastian Amland Skaanvik Dan Wang Jianfeng chen Mingdong Dong 《Engineering》 SCIE EI CAS CSCD 2023年第5期102-113,I0003,共13页
微藻是一种体积微小的真核生物,可通过叶绿素a的光合作用将二氧化碳转化为多种生物活性物质。在过去的十年中,有关活体微藻和其他生物相容性成分组成的生物杂化材料在解决许多医学难题中显示出巨大的潜力,如肿瘤治疗、组织重建和药物输... 微藻是一种体积微小的真核生物,可通过叶绿素a的光合作用将二氧化碳转化为多种生物活性物质。在过去的十年中,有关活体微藻和其他生物相容性成分组成的生物杂化材料在解决许多医学难题中显示出巨大的潜力,如肿瘤治疗、组织重建和药物输送。固定在常规生物材料中的微藻可以长时间维持其光合活性从而在局部提供氧气,同时也可作为调节细胞活性的生物相容性界面材料。微藻的运动性还激发了生物杂交机器人的发展,其中药物分子可通过非共价键吸附结合至微藻表面,并通过精确控制其运动轨迹将药物输送到目标区域。此外,微藻的自发荧光、趋光性和生物质生产可以整合到具有多种功能的新型生物杂化材料的设计中;通过基因工程改造的微藻可以赋予生物杂交材料新的特性,如特异性细胞靶向能力和从藻类细胞中局部释放重组蛋白——这些技术技术有望促进微藻基生物杂交材料(MBBM)在多个生物医学领域的临床应用。本文总结了MBBM的制造、生理学和运动能力;然后,回顾了MBBM近年来在生物医学领域的典型应用报告;最后,对MBBM的挑战和未来前景进行了讨论。 展开更多
关键词 药物输送 生物医学应用 医学难题 未来前景 运动轨迹 自发荧光 药物分子 非共价键
下载PDF
Micropore engineering on hollow nanospheres for ultra-stable sodium-selenium batteries
2
作者 Gongke Wang yumeng chen +7 位作者 Yu Han Lixue Yang Wenqing Zhao Changrui chen Zihao Zeng Shuya Lei Shaohui Yuan Peng Ge 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期99-109,I0004,共12页
Attracted by high energy density and considerable conductivity of selenium(Se),Na-Se batteries have been deemed promising energy-storage systems.But,it still suffers from sluggish kinetic behaviors and similar“shuttl... Attracted by high energy density and considerable conductivity of selenium(Se),Na-Se batteries have been deemed promising energy-storage systems.But,it still suffers from sluggish kinetic behaviors and similar“shuttling effect”to S-electrodes.Herein,utilizing uniform hollow carbon spheres as precursors,Se-material is effectively loaded through vapor-infiltration method.Owing to the distribution of optimized pores,the content of microspores could be up to~60%(<2 nm),serving important roles for the physical confinement effect.Meanwhile,the rich oxygen-containing groups and N-elements could be noted,inducing the evolution of electron-moving behaviors.More significantly,assisted by the interfacial C-Se bonds and tiny Se distributions,Se electrodes are activated during cycling.Used as cathodes for Na-Se systems,the as-resulted samples display a capacity of 593.9 mA h g^(-1)after 100 cycles at the current density of 0.1 C.Even after 6000 cycles,the capacity could be still kept at about 225 mA h g^(-1)at 5.0 C.Supported by the detailed kinetic analysis,the designed microspores size induces the increasing redox reaction of nano Se,whilst the surface traits further render the enhancement of pseudo-capacitive contributions.Moreover,after cycling,the product Sex(x<4)in pores serves as the primary active material.Given this,the work is anticipated to provide an effective strategy for advanced electrodes for Na-Se systems. 展开更多
关键词 Carbon host Tailoring pores Heteroatom doping Vapor-infltration method Sodium-selenium batteries
下载PDF
Regulation of FN1 degradation by the p62/SQSTM1-dependent autophagy-lysosome pathway in HNSCC 被引量:7
3
作者 Xinchen Liu Lin Meng +6 位作者 Xing Li Daowei Li Qilin Liu yumeng chen Xiangwei Li Wenhuan Bu Hongchen Sun 《International Journal of Oral Science》 SCIE CAS CSCD 2020年第4期327-337,共11页
Epithelial–mesenchymal transition(EMT)is involved in both physiological and pathological processes.EMT plays an essential role in the invasion,migration and metastasis of tumours.Autophagy has been shown to regulate ... Epithelial–mesenchymal transition(EMT)is involved in both physiological and pathological processes.EMT plays an essential role in the invasion,migration and metastasis of tumours.Autophagy has been shown to regulate EMT in a variety of cancers but not in head and neck squamous cell carcinoma(HNSCC).Herein,we investigated whether autophagy also regulates EMT in HNSCC.Analyses of clinical data from three public databases revealed that higher expression of fibronectin-1(FN1)correlated with poorer prognosis and higher tumour pathological grade in HNSCC.Data from SCC-25 cells demonstrated that rapamycin and Earle’s balanced salt solution(EBSS)promoted autophagy,leading to increased FN1 degradation,while 3-methyladenine(3-MA),bafilomycin A1(Baf A1)and chloroquine(CQ)inhibited autophagy,leading to decreased FN1 degradation.On the other hand,autophagic flux was blocked in BECN1 mutant HNSCC Cal-27 cells,and rapamycin did not promote autophagy in Cal-27 cells;also in addition,FN1 degradation was inhibited.Further,we identified FN1 degradation through the lysosome-dependent degradation pathway using the proteasome inhibitor MG132.Data from immunoprecipitation assays also showed that p62/SQSTM1 participated as an autophagy adapter in the autophagy–lysosome pathway of FN1 degradation.Finally,data from immunoprecipitation assays demonstrated that the interaction between p62 and FN1 was abolished in p62 mutant MCF-7 and A2780 cell lines.These results indicate that autophagy significantly promotes the degradation of FN1.Collectively,our findings clearly suggest that FN1,as a marker of EMT,has adverse effects on HNSCC and elucidate the autophagy–lysosome degradation mechanism of FN1. 展开更多
关键词 inhibited INVASION FN1
下载PDF
Temporal-spatial risk assessment of COVID-19 under the influence of urban spatial environmental parameters:The case of Shenyang city
4
作者 Sui Li Zhe Li +5 位作者 Yixin Dong Tiemao Shi Shiwen Zhou yumeng chen Xun Wang Feifei Qin 《Building Simulation》 SCIE EI CSCD 2023年第5期683-699,共17页
Respiratory infection is the main route for the transmission of coronavirus pneumonia,and the results have shown that the urban spatial environment significantly influences the risk of infection.Based on the Wells-Ril... Respiratory infection is the main route for the transmission of coronavirus pneumonia,and the results have shown that the urban spatial environment significantly influences the risk of infection.Based on the Wells-Riley model of respiratory infection probability,the study determined the human respiratory-related parameters and the effective influence range;extracted urban morphological parameters,assessed the ventilation effects of different spatial environments,and,combined with population flow monitoring data,constructed a method for assessing the risk of Covid-19 respiratory infection in urban-scale grid cells.In the empirical study in Shenyang city,a severe cold region,urban morphological parameters,population size,background wind speed,and individual behavior patterns were used to calculate the distribution characteristics of temporal and spatial concomitant risks in urban areas grids under different scenarios.The results showed that the correlation between the risk of respiratory infection in urban public spaces and the above variables was significant.The exposure time had the greatest degree of influence on the probability of respiratory infection risk among the variables.At the same time,the change in human body spacing beyond 1 m had a minor influence on the risk of infection.Among the urban morphological parameters,building height had the highest correlation with the risk of infection,while building density had the lowest correlation.The actual point distribution of the epidemic in Shenyang from March to April 2022 was used to verify the evaluation results.The overlap rate between medium or higher risk areas and actual cases was 78.55%.The planning strategies for epidemic prevention and control were proposed for the spatial differentiation characteristics of different risk elements.The research results can accurately classify the risk level of urban space and provide a scientific basis for the planning response of epidemic prevention and control and the safety of public activities. 展开更多
关键词 COVID-19 virus infection rate GIS data simulations urban morphological parameters analysis infection risk assessment epidemic containment planning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部