期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Facile synthesis of accordion-like porous carbon from waste PET bottles-based MIL-53(Al)and its application for high-performance Zn-ion capacitor
1
作者 Jiaxin Li Shuai Zhang +6 位作者 yumeng hua Yichao Lin Xin Wen Ewa Mijowska Tao Tang Xuecheng Chen Rodney S.Ruoff 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1138-1150,共13页
It is of great scientific and economic value to recycle waste poly(ethylene terephthalate)(PET)into high-value PET-based metal organic frameworks(MOFs)and further convert it into porous carbon for green energy storage... It is of great scientific and economic value to recycle waste poly(ethylene terephthalate)(PET)into high-value PET-based metal organic frameworks(MOFs)and further convert it into porous carbon for green energy storage applications.In the present study,a facile and costeffective hydrothermal process was developed to direct recycle waste PET bottles into MIL-53(Al)with a 100% conversation,then the MOFderived porous carbon was assembled into electrodes for high-performance supercapacitors.The results indicated that the as-synthesized carbon exhibited high SSA of 1712 m^(2)g^(-1)and unique accordion-like structure with hierarchical porosity.Benefit to these advantageous characters,the assembled three-electrode supercapacitor displayed high specific capacitances of 391 F g^(-1)at the current density of 0.5 A g^(-1)and good rate capability of 73.6% capacitance retention at 20 A g^(-1)in 6 mol L^(-1)KOH electrolyte.Furthermore,the assembled zinc ion capacitor still revealed outstanding capacitance of 335 F g^(-1)at 0.1 A g^(-1),excellent cycling stability of 92.2% capacitance retention after 10000 cycles and ultra-high energy density of 150.3 Wh kg^(-1)at power density of 90 W kg^(-1)in 3 mol L^(-1)ZnSO_(4)electrolyte.It is believed that the current work provides a facile and effective strategy to recycle PET waste into high-valuable MOF,and further expands the applications of MOF-derived carbons for high-performance energy storage devices,so it is conducive to both pollution alleviation and sustainable economic development. 展开更多
关键词 PET RECYCLING Porous carbon SUPERCAPACITOR Energy storage
下载PDF
Recent advances of metal fluoride compounds cathode materials for lithium ion batteries:a review
2
作者 Yanshen Gao Jiaxin Li +5 位作者 yumeng hua Qingshan Yang Rudof Holze Ewa Mijowska Paul K Chu Xuecheng Chen 《Materials Futures》 2024年第3期1-27,共27页
As the most successful new energy storage device developed in recent decades,lithium-ion batteries(LIBs)are ubiquitous in the modern society.However,current commercial LIBs comprising mainly intercalated cathode mater... As the most successful new energy storage device developed in recent decades,lithium-ion batteries(LIBs)are ubiquitous in the modern society.However,current commercial LIBs comprising mainly intercalated cathode materials are limited by the theoretical energy density which cannot meet the high storing energy demanded by renewable applications.Compared to intercalation-type cathode materials,low-cost conversion-type cathode materials with a high theoretical specific capacity are expected to boost the overall energy of LIBs.Among the different conversion cathode materials,metal fluorides have become a popular research subject for their environmental friendliness,low toxicity,wide voltage range,and high theoretical specific capacity.In this review,we compare the energy storage performance of intercalation and conversion cathode materials based on thermodynamic calculation and summarize the main challenges.The common conversion-type cathode materials are described and their respective reaction mechanisms are discussed.In particular,the structural flaws and corresponding solutions and strategies are described.Finally,we discussed the prospective of metal fluorides and other conversion cathode materials to guide further research in this important field. 展开更多
关键词 lithium-ion batteries metal fluorides cathode materials conversion materials
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部