期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Carbon-Coated Three-Dimensional MXene/Iron Selenide Ball with Core–Shell Structure for High-Performance Potassium-Ion Batteries 被引量:5
1
作者 Su Hyun Yang yun jae lee +2 位作者 Heemin Kang Seung-Keun Park yun Chan Kang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第1期278-294,共17页
Two-dimensional(2D)MXenes are promising as electrode materials for energy storage,owing to their high electronic conductivity and low diffusion barrier.Unfortunately,similar to most 2D materials,MXene nanosheets easil... Two-dimensional(2D)MXenes are promising as electrode materials for energy storage,owing to their high electronic conductivity and low diffusion barrier.Unfortunately,similar to most 2D materials,MXene nanosheets easily restack during the electrode preparation,which degrades the electrochemical performance of MXene-based materials.A novel synthetic strategy is proposed for converting MXene into restacking-inhibited three-dimensional(3D)balls coated with iron selenides and carbon.This strategy involves the preparation of Fe_(2)O_(3)@carbon/MXene microspheres via a facile ultrasonic spray pyrolysis and subsequent selenization process.Such 3D structuring effectively prevents interlayer restacking,increases the surface area,and accelerates ion transport,while maintaining the attractive properties of MXene.Furthermore,combining iron selenides and carbon with 3D MXene balls offers many more sites for ion storage and enhances the structural robustness of the composite balls.The resultant 3D structured microspheres exhibit a high reversible capacity of 410 mAh g^(−1) after 200 cycles at 0.1 A g^(−1) in potassium-ion batteries,corresponding to the capacity retention of 97% as calculated based on 100 cycles.Even at a high current density of 5.0 A g^(−1),the composite exhibits a discharge capacity of 169 mAh g^(−1). 展开更多
关键词 MXene Spray pyrolysis Iron selenide Potassium-ion batteries 3D structures
下载PDF
Synergistically coupling of Ni–Fe LDH arrays with hollow Co–Mo sulfide nanotriangles for highly efficient overall water splitting 被引量:1
2
作者 yun jae lee Seung-Keun Park 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期522-532,共11页
Developing bifunctional catalysts that can catalyze both oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)is pivotal to commercializing large-scale water splitting.Herein,a novel hollow nanotriangle c... Developing bifunctional catalysts that can catalyze both oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)is pivotal to commercializing large-scale water splitting.Herein,a novel hollow nanotriangle composed of NiFe LDH-CoMoS_(x) heterojunction(H-CMSx@NiFe LDH)is proposed as a highly efficient bifunctional electrocatalyst for both OER and HER.To fabricate a heterojunction system,ultra-thin nickel–iron layered double hydroxide(NiFe LDH)nanosheets are uniformly electrodeposited onto a metal–organic framework-derived hollow CoMoS_(x) nanotriangle.The strong coupling of CoMoS_(x) and NiFe LDH catalysts forms the intimate heterojunction interfaces to facilitate interfacial charge transfer,which is favorable to enhance the bifunctional catalytic activity.Moreover,the large void of CoMoS_(x) nanotriangles and interconnected ultra-thin NiFe LDH nanosheets result in good electrolyte penetration and gas release.Therefore,the as-prepared H-CMSx@NiFe LDH on nickel foam(NF)exhibits an impressive catalytic activity and durability for OER and HER activities,delivering a current density of 100 mA·cm^(−2) at the small overpotentials of 214 and 299 mV in OER and HER,respectively.Meanwhile,H-CMSx@NiFe LDH/NF proves to be an effective electrode for an alkaline electrolyzer,as a voltage of only 1.99 V is enough to achieve a current density voltage of only 1.99 V is enough to achieve a current density of 400 mA·cm^(−2) with no degradation in performance over 50 h. 展开更多
关键词 Overall water splitting Metal-organic framework Molybdenum sulfide Layered double hydroxide HETEROJUNCTION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部