This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
Mn-rich LiFe_(1-x)Mn_(x)PO_(4)(x>0.5),which combines the high operation voltage of LiMnPO_(4)with excellent rate performa nce of LiFePO4,is hindered by its sluggish kinetic properties.Herein,thermodynamic equilibri...Mn-rich LiFe_(1-x)Mn_(x)PO_(4)(x>0.5),which combines the high operation voltage of LiMnPO_(4)with excellent rate performa nce of LiFePO4,is hindered by its sluggish kinetic properties.Herein,thermodynamic equilibrium analysis of Mn^(2+)-Fe^(2+)-Mg^(2+)-C_(2)O_(4)^(2-)-H_(2)O system is used to guide the design and preparation of insitu Mg-doped(Fe_(0.4)Mn_(0.6))_(1-x)Mg_(x)C_(2)O_(4)intermediate,which is then employed as an innovative precursor to synthesize high-performance Mg-doped LiFe_(0.4)Mn_(0.6)PO_(4).It indicates that the metal ions with a high precipitation efficiency and the stoichiometric precursors with uniform element distribution can be achieved under the optimized thermodynamic conditions.Meanwhile,accelerated Li+diffusivity and reduced charge transfer resistance originating from Mg doping are verified by various kinetic characterizations.Benefiting from the contributions of inherited homogeneous element distribution,small particle size,uniform carbon layer coating,enhanced Li+migration ability and structural stability induced by Mg doping,the Li(Fe_(0.4)Mn_(0.6))_(0.97)Mg_(0.03)PO_(4)/C exhibits splendid electrochemical performance.展开更多
To gain insight into the flow mechanisms and stress sensitivity for fractured-vuggy reservoirs,several core models with different structural characteristics were designed and fabricated to investigate the impact of ef...To gain insight into the flow mechanisms and stress sensitivity for fractured-vuggy reservoirs,several core models with different structural characteristics were designed and fabricated to investigate the impact of effective stress on permeability for carbonate fractured-vuggy rocks(CFVR).It shows that the permeability performance curves under different pore and confining pressures(i.e.altered stress conditions)for the fractured core models and the vuggy core models have similar change patterns.The ranges of permeability variation are significantly wider at high pore pressures,indicating that permeability reduction is the most significant during the early stage of development for fractured-vuggy reservoirs.Since each obtained effective stress coefficient for permeability(ESCP)varies with the changes in confining pressure and pore pressure,the effective stresses for permeability of four representative CFVR show obvious nonlinear characteristics,and the variation ranges of ESCP are all between 0 and 1.Meanwhile,a comprehensive ESCP mathematical model considering triple media,including matrix pores,fractures,and dissolved vugs,was proposed.It is proved theoretically that the ESCP of CFVR generally varies between 0 and 1.Additionally,the regression results showed that the power model ranked highest among the four empirical models mainly applied in stress sensitivity characterization,followed by the logarithmic model,exponential model,and binomial model.The concept of“permeability decline rate”was introduced to better evaluate the stress sensitivity performance for CFVR,in which the one-fracture rock is the strongest,followed by the fracture-vug rock and two-horizontalfracture rock;the through-hole rock is the weakest.In general,this study provides a theoretical basis to guide the design of development and adjustment programs for carbonate fractured-vuggy reservoirs.展开更多
BACKGROUND Gastric cancer(GC)is associated with high mortality rates.Bile acids(BAs)reflux is a well-known risk factor for GC,but the specific mechanism remains unclear.During GC development in both humans and animals...BACKGROUND Gastric cancer(GC)is associated with high mortality rates.Bile acids(BAs)reflux is a well-known risk factor for GC,but the specific mechanism remains unclear.During GC development in both humans and animals,BAs serve as signaling molecules that induce metabolic reprogramming.This confers additional cancer phenotypes,including ferroptosis sensitivity.Ferroptosis is a novel mode of cell death characterized by lipid peroxidation that contributes universally to malignant progression.However,it is not fully defined if BAs can influence GC progression by modulating ferroptosis.AIM To reveal the mechanism of BAs regulation in ferroptosis of GC cells.METHODS In this study,we treated GC cells with various stimuli and evaluated the effect of BAs on the sensitivity to ferroptosis.We used gain and loss of function assays to examine the impacts of farnesoid X receptor(FXR)and BTB and CNC homology 1(BACH1)overexpression and knockdown to obtain further insights into the molecular mechanism involved.RESULTS Our data suggested that BAs could reverse erastin-induced ferroptosis in GC cells.This effect correlated with increased glutathione(GSH)concentrations,a reduced GSH to oxidized GSH ratio,and higher GSH peroxidase 4(GPX4)expression levels.Subsequently,we confirmed that BAs exerted these effects by activating FXR,which markedly increased the expression of GSH synthetase and GPX4.Notably,BACH1 was detected as an essential intermediate molecule in the promotion of GSH synthesis by BAs and FXR.Finally,our results suggested that FXR could significantly promote GC cell proliferation,which may be closely related to its anti-ferroptosis effect.CONCLUSION This study revealed for the first time that BAs could inhibit ferroptosis sensitivity through the FXR-BACH1-GSHGPX4 axis in GC cells.This work provided new insights into the mechanism associated with BA-mediated promotion of GC and may help identify potential therapeutic targets for GC patients with BAs reflux.展开更多
During the process of constructional backfill mining,the cemented paste backfill(CPB)typically exhibits a high degree of brittleness and limited resistance to failure.In this study,the mechanical and damage evolution ...During the process of constructional backfill mining,the cemented paste backfill(CPB)typically exhibits a high degree of brittleness and limited resistance to failure.In this study,the mechanical and damage evolution characteristics of waste tire steel fiber(WTSF)-modified CPB were studied through uniaxial compression tests,acoustic emission(AE)tests,and scanning electron microscopy(SEM).The results showed that the uniaxial compressive strength(UCS)decreased when the WTSF content was 0.5%,1%,and 1.5%.When the WTSF content reached 1%,the UCS of the modified CPB exhibited a minimal decrease(0.37 MPa)compared to that without WTSF.When the WTSF content was 0.5%,1%,and 1.5%,peak strain of the WTSF-modified CPB increased by 18%,31.33%,and 81.33%,while the elastic modulus decreased by 21.31%,26.21%,and 45.42%,respectively.The addition of WTSF enhances the activity of AE events in the modified CPB,resulting in a slower progression of the entire failure process.After the failure,the modified CPB retained a certain level of load-bearing capacity.Generally,the failure of the CPB was dominated by tensile cracks.After the addition of WTSF,a gradual increase in the proportion of tensile cracks was observed upon loading the modified CPB sample to the pore compaction stage.The three-dimensional localization of AE events showed that the WTSF-modified CPB underwent progressive damage during the loading,and the samples still showed good integrity after failure.Additionally,the response relationship between energy evolution and damage development of WTSF-modified CPB during uniaxial compression was analyzed,and the damage constitutive model of CPB samples with different WTSF contents was constructed.This study provides a theoretical basis for the enhancement of CPB modified by adding WTSF,serving as a valuable reference for the design of CPB constructional backfill.展开更多
The Co_(3)O_(4)nanoparticles,dominated by a catalytically active(110)lattice plane,were synthesized as a low-temperature NO_(x) adsorbent to control the cold start emissions from vehicles.These nanoparticles boast a s...The Co_(3)O_(4)nanoparticles,dominated by a catalytically active(110)lattice plane,were synthesized as a low-temperature NO_(x) adsorbent to control the cold start emissions from vehicles.These nanoparticles boast a substantial quantity of active chemisorbed oxygen and lattice oxygen,which exhibited a NO_(x) uptake capacity commensurate with Pd/SSZ-13 at 100℃.The primary NO_(x) release temperature falls within a temperature range of 200-350℃,making it perfectly suitable for diesel engines.The characterization results demonstrate that chemisorbed oxygen facilitate nitro/nitrites intermediates formation,contributing to the NO_(x) storage at 100℃,while the nitrites begin to decompose within the 150-200℃range.Fortunately,lattice oxygen likely becomes involved in the activation of nitrites into more stable nitrate within this particular temperature range.The concurrent processes of nitrites decomposition and its conversion to nitrates results in a minimal NO_(x) release between the temperatures of 150-200℃.The nitrate formed via lattice oxygen mainly induces the NO_(x) to be released as NO_(2) within a temperature range of 200-350℃,which is advantageous in enhancing the NO_(x) activity of downstream NH_(3)-SCR catalysts,by boosting the fast SCR reaction pathway.Thanks to its low cost,considerable NO_(x) absorption capacity,and optimal release temperature,Co_(3)O_(4)demonstrates potential as an effective material for passive NO_(x) adsorber applications.展开更多
Eclipta prostrata L.has been used in traditional medicine and known for its liver-protective properties for centuries.Wedelolactone(WEL)and demethylwedelolactone(DWEL)are the major coumarins found in E.prostrata L.How...Eclipta prostrata L.has been used in traditional medicine and known for its liver-protective properties for centuries.Wedelolactone(WEL)and demethylwedelolactone(DWEL)are the major coumarins found in E.prostrata L.However,the comprehensive characterization of these two compounds on non-alcoholic fatty liver disease(NAFLD)still remains to be explored.Utilizing a well-established zebrafish model of thioacetamide(TAA)-induced liver injury,the present study sought to investigate the impacts and mechanisms of WEL and DWEL on NAFLD through integrative spatial metabolomics with liver-specific transcriptomics analysis.Our results showed that WEL and DWEL significantly improved liver function and reduced the accumulation of fat in the liver.The biodistributions and metabolism of these two compounds in whole-body zebrafish were successfully mapped,and the discriminatory endogenous metabolites reversely regulated by WEL and DWEL treatments were also characterized.Based on spatial metabolomics and transcriptomics,we identified that steroid biosynthesis and fatty acid metabolism are mainly involved in the hepatoprotective effects of WEL instead of DWEL.Our study unveils the distinct mechanism of WEL and DWEL in ameliorating NAFLD,and presents a“multi-omics”platform of spatial metabolomics and liver-specific transcriptomics to develop highly effective compounds for further improved therapy.展开更多
Bacterial-based antitumor immunity has become a promising strategy to activate the immune system for fighting cancer.However,the potential application of bacterial therapy is hindered by the presence of instability an...Bacterial-based antitumor immunity has become a promising strategy to activate the immune system for fighting cancer.However,the potential application of bacterial therapy is hindered by the presence of instability and susceptibility to infections within bacterial populations.Furthermore,monotherapy is ineffective in completely eliminating complex cancer with multiple contributing factors.In this study,based on our discovery that spore shell(SS)of Bacillus coagulans exhibits excellent tumor-targeting ability and adjuvant activity,we develop a biomimetic spore nanoplatform to boost bacteria-mediated antitumor therapy,chemodynamic therapy and antitumor immunity for synergistic cancer treatment.In detail,SS is separated from probiotic spores and then attached to the surface of liposome(Lipo)that was loaded with hemoglobin(Hb),glucose oxidase(GOx)and JQ1to construct SS@Lipo/Hb/GOx/JQ1.In tumor tissue,highly toxic hydroxyl radicals(·OH)are generated via sequential catalytic reactions:GOx catalyzing glucose into H_(2)O_(2)and Fe^(2+)in Hb decomposing H_(2)O_(2)into·OH.The combination of·OH and SS adjuvant can improve tumor immunogenicity and activate immune system.Meanwhile,JQ1-mediated down-regulation of PD-L1 and Hb-induced hypoxia alleviation synergistically reshape immunosuppressive tumor microenvironment and potentiate immune response.In this manner,SS@Lipo/Hb/GOx/JQ1 significantly suppresses tumor growth and metastasis.To summarize,the nanoplatform represents an optimum strategy to potentiate bacteria-based cancer immunotherapy.展开更多
Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of th...Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security.展开更多
In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperatur...In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.展开更多
Efficient energy storage devices with suitable electrode materials,that integrate high power and high energy,are the crucial requisites of the renewable power source,which have unwrapped new possibilities in the susta...Efficient energy storage devices with suitable electrode materials,that integrate high power and high energy,are the crucial requisites of the renewable power source,which have unwrapped new possibilities in the sustainable development of energy and the environment.Herein,a facile collagen microstructure modulation strategy is proposed to construct a nitrogen/oxygen dual-doped hierarchically porous carbon fiber with ultrahigh specific surface area(2788 m^(2)g^(-1))and large pore volume(4.56 cm^(3)g^(-1))via local microfibrous breakage/disassembly of natural structured proteins.Combining operando spectroscopy and density functional theory unveil that the dual-heteroatom doping could effectively regulate the electronic structure of carbon atom framework with enhanced electric conductivity and electronegativity as well as decreased diffusion resistance in favor of rapid pseudocapacitive-dominated Li^(+)-storage(353 mAh g^(-1)at 10 A g^(-1)).Theoretical calculations reveal that the tailored micro-/mesoporous structures favor the rapid charge transfer and ion storage,synergistically realizing high capacity and superior rate performance for NPCF-H cathode(75.0 mAh g^(-1)at 30 A g^(-1)).The assembled device with NPCF-H as both anode and cathode achieves extremely high energy density(200 Wh kg^(-1))with maximum power density(42600 W kg^(-1))and ultralong lifespan(80%capacity retention over 10000 cycles).展开更多
In current research on task offloading and resource scheduling in vehicular networks,vehicles are commonly assumed to maintain constant speed or relatively stationary states,and the impact of speed variations on task ...In current research on task offloading and resource scheduling in vehicular networks,vehicles are commonly assumed to maintain constant speed or relatively stationary states,and the impact of speed variations on task offloading is often overlooked.It is frequently assumed that vehicles can be accurately modeled during actual motion processes.However,in vehicular dynamic environments,both the tasks generated by the vehicles and the vehicles’surroundings are constantly changing,making it difficult to achieve real-time modeling for actual dynamic vehicular network scenarios.Taking into account the actual dynamic vehicular scenarios,this paper considers the real-time non-uniform movement of vehicles and proposes a vehicular task dynamic offloading and scheduling algorithm for single-task multi-vehicle vehicular network scenarios,attempting to solve the dynamic decision-making problem in task offloading process.The optimization objective is to minimize the average task completion time,which is formulated as a multi-constrained non-linear programming problem.Due to the mobility of vehicles,a constraint model is applied in the decision-making process to dynamically determine whether the communication range is sufficient for task offloading and transmission.Finally,the proposed vehicular task dynamic offloading and scheduling algorithm based on muti-agent deep deterministic policy gradient(MADDPG)is applied to solve the optimal solution of the optimization problem.Simulation results show that the algorithm proposed in this paper is able to achieve lower latency task computation offloading.Meanwhile,the average task completion time of the proposed algorithm in this paper can be improved by 7.6%compared to the performance of the MADDPG scheme and 51.1%compared to the performance of deep deterministic policy gradient(DDPG).展开更多
This paper presents a novel cooperative value iteration(VI)-based adaptive dynamic programming method for multi-player differential game models with a convergence proof.The players are divided into two groups in the l...This paper presents a novel cooperative value iteration(VI)-based adaptive dynamic programming method for multi-player differential game models with a convergence proof.The players are divided into two groups in the learning process and adapt their policies sequentially.Our method removes the dependence of admissible initial policies,which is one of the main drawbacks of the PI-based frameworks.Furthermore,this algorithm enables the players to adapt their control policies without full knowledge of others’ system parameters or control laws.The efficacy of our method is illustrated by three examples.展开更多
The repairing effect of poly(N-vinylpyrrolidone-co-methacrylic acid)on permed or bleached damaged hair was studied.The combing and tensile strength of permed and bleached hair before and after treatment with the copol...The repairing effect of poly(N-vinylpyrrolidone-co-methacrylic acid)on permed or bleached damaged hair was studied.The combing and tensile strength of permed and bleached hair before and after treatment with the copolymer solution were tested,and the effects of the mass fraction of copolymer solution and immerseing time on the combing and tensile strength for permed or bleached damaged hair were investigated.The repair mechanism of permed or bleached damaged hair was also explored.The results show that when the immersing time is 3 hours,the tensile strength of the permed hair increases with the mass fraction of the copolymer solution Tensile strength within 0%-0.3%,but no obvious change is observed when250 Yield strength the mass fraction is over 0.3%.Therefore,the optimal mass 200 fraction of the copolymer solution for repairing the permed hair(cN/dtex)is 0.3%.Similarly,the optimal mass fraction of the copolymer 150strength/solution for repairing the bleached hair is 0.5%.Furthermore,the effects of immersing time on the tensile strength of the100Tensile damaged hair fibers were compared between the permed and90 bleached hair before and after treatment with the copolymer500.40.30.500.10.2 solution.Coincidentally,the optimal immersion time for permedw(P(NVP-co-MAA))/%or bleached damaged hair is both 2 hours.The tensile strength of the permed and bleached hair soaked in 0.3%and 0.5%copolymer solutions for 2 hours increases by 15.55%and 18.12%,respectively,compared to untreated hair.Through infrared spectroscopy analysis,it is found that the amide II band in hair fibers shifted to the blue after repair,with the wave number shift of 11.12 and 11.09 cm^(-1),which confirm the formation of hydrogen bonds in the hair samples.Additionally,the urea hydrogen bond disruption experiment demonstrates that urea does not disrupt the hydrogen bonds in untreated hair fibers,but prevents the formation of new hydrogen bonds in damaged hair fibers.It further validates that the improvement of the tensile strength of the copolymer treated damaged hair fibers is mainly due to the formation of hydrogen bonds.After treatment with the copolymer,the dry and wet combing friction decrease by 30.73%and 28.55%for the permed hair,and decrease by 28.55%and 24.83%for the bleached hairs,respectively.The scanning electron microscope shows that the copolymer can flatten the cuticle and fill the space between the raised cuticles.展开更多
Colorectal cancer(CRC)is a major global health problem with high morbidity and mortality rates.Surgical resection is the main treatment for early-stage CRC,but detecting it early is challenging.Therefore,effective the...Colorectal cancer(CRC)is a major global health problem with high morbidity and mortality rates.Surgical resection is the main treatment for early-stage CRC,but detecting it early is challenging.Therefore,effective therapeutic targets for advanced patients are still lacking.Exosomes,tiny vesicles in body fluids,play a crucial role in tumor metastasis,immune regulation,and drug resistance.Interestingly,they can even serve as a biomarker for cancer diagnosis and prognosis.Studies have shown that exosomes can carry miRNA,mediate the polarization of M1/M2 macrophages,promote the proliferation and metastasis of cancer cells,and affect the prognosis of CRC.Since the gastrointestinal tract has many macrophages,understanding the mechanism behind exosomal miRNA-mediated macrophage polarization in CRC treatment is crucial.This article summarizes recent advancements in the study of exosomal miRNAs in CRC and their potential as diagnostic and prognostic markers.展开更多
In the context of the People's Republic of China,coronary artery disease(CAD)presents a sig-nificant clinical challenge,with over 11.3 mil-lion patients diagnosed.Traditionally,the diagnos-is of CAD has predominan...In the context of the People's Republic of China,coronary artery disease(CAD)presents a sig-nificant clinical challenge,with over 11.3 mil-lion patients diagnosed.Traditionally,the diagnos-is of CAD has predominantly relied on invasive coronary angiography.[1]However,recent advances in clinical research have revealed a notable trend:a substantial 82% of patients subjected to such invas-ive diagnostics do not necessitate interventional therapy.展开更多
It is increasingly relevant to study the effects of climate change on species habitats. Using a maximum entropy model, 22 environmental factors with significant effects on sorghum habitat distribution in China were se...It is increasingly relevant to study the effects of climate change on species habitats. Using a maximum entropy model, 22 environmental factors with significant effects on sorghum habitat distribution in China were selected to predict the potential habitat distribution of sorghum in China. The potential distribution of sorghum under baseline climate conditions and future climate conditions (2050s and 2070s) under two climate change scenarios, RCP4.5 and RCP8.5, were simulated, and the receiver operating curve under the accuracy of the model was evaluated using the area under the receiver operating curve (AUC). The results showed that the maximum entropy model predicted the potential sorghum habitat distribution with high accuracy, with Bio2 (monthly mean diurnal temperature difference), Bio6 (minimum temperature in the coldest month), and Bio13 (rainfall in the wettest month) as the main climatic factors affecting sorghum distribution among the 22 environmental factors. Under the baseline climate conditions, potential sorghum habitats are mainly distributed in the southwest, central, and east China. Over time, the potential sorghum habitat expanded into northern and southern China, with significant additions and negligible decreases in potential sorghum habitat in the study area, and a significant increase in total area, with the RCP8.5 scenario adding much more area than the RCP4.5 scenario.展开更多
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.
基金financially supported by the National Natural Science Foundation of China(No.51904250)the China Postdoctoral Science Foundation(No.2021M692254)+2 种基金the Sichuan Science and Technology Program(No.2022YFG0098)the Fundamental Research Funds for the Central Universities(Nos.2021CDSN-02,2022SCU12002,2022CDZG-17,2022CDSN-08,2022CDZG-9)the Hohhot Science and Technology Program(No.2023-Jie Bang Gua Shuai-Gao-3)。
文摘Mn-rich LiFe_(1-x)Mn_(x)PO_(4)(x>0.5),which combines the high operation voltage of LiMnPO_(4)with excellent rate performa nce of LiFePO4,is hindered by its sluggish kinetic properties.Herein,thermodynamic equilibrium analysis of Mn^(2+)-Fe^(2+)-Mg^(2+)-C_(2)O_(4)^(2-)-H_(2)O system is used to guide the design and preparation of insitu Mg-doped(Fe_(0.4)Mn_(0.6))_(1-x)Mg_(x)C_(2)O_(4)intermediate,which is then employed as an innovative precursor to synthesize high-performance Mg-doped LiFe_(0.4)Mn_(0.6)PO_(4).It indicates that the metal ions with a high precipitation efficiency and the stoichiometric precursors with uniform element distribution can be achieved under the optimized thermodynamic conditions.Meanwhile,accelerated Li+diffusivity and reduced charge transfer resistance originating from Mg doping are verified by various kinetic characterizations.Benefiting from the contributions of inherited homogeneous element distribution,small particle size,uniform carbon layer coating,enhanced Li+migration ability and structural stability induced by Mg doping,the Li(Fe_(0.4)Mn_(0.6))_(0.97)Mg_(0.03)PO_(4)/C exhibits splendid electrochemical performance.
基金This work was supported by the Joint Fund of NSFC for Enterprise Innovation and Development(Grant No.U19B6003-02-06)the National Natural Science Foundation of China(Grant No.51974331)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20200525)The authors would like to sincerely acknowledge these funding programs for their financial support.Particularly,the support provided by the China Scholarship Council(CSC)during a visit of Ke Sun(File No.202106440065)to the University of Alberta is also sincerely acknowledged.
文摘To gain insight into the flow mechanisms and stress sensitivity for fractured-vuggy reservoirs,several core models with different structural characteristics were designed and fabricated to investigate the impact of effective stress on permeability for carbonate fractured-vuggy rocks(CFVR).It shows that the permeability performance curves under different pore and confining pressures(i.e.altered stress conditions)for the fractured core models and the vuggy core models have similar change patterns.The ranges of permeability variation are significantly wider at high pore pressures,indicating that permeability reduction is the most significant during the early stage of development for fractured-vuggy reservoirs.Since each obtained effective stress coefficient for permeability(ESCP)varies with the changes in confining pressure and pore pressure,the effective stresses for permeability of four representative CFVR show obvious nonlinear characteristics,and the variation ranges of ESCP are all between 0 and 1.Meanwhile,a comprehensive ESCP mathematical model considering triple media,including matrix pores,fractures,and dissolved vugs,was proposed.It is proved theoretically that the ESCP of CFVR generally varies between 0 and 1.Additionally,the regression results showed that the power model ranked highest among the four empirical models mainly applied in stress sensitivity characterization,followed by the logarithmic model,exponential model,and binomial model.The concept of“permeability decline rate”was introduced to better evaluate the stress sensitivity performance for CFVR,in which the one-fracture rock is the strongest,followed by the fracture-vug rock and two-horizontalfracture rock;the through-hole rock is the weakest.In general,this study provides a theoretical basis to guide the design of development and adjustment programs for carbonate fractured-vuggy reservoirs.
基金Supported by the Major Basic Research Project of Natural Science Foundation of Shandong Province,No.ZR2020ZD15.
文摘BACKGROUND Gastric cancer(GC)is associated with high mortality rates.Bile acids(BAs)reflux is a well-known risk factor for GC,but the specific mechanism remains unclear.During GC development in both humans and animals,BAs serve as signaling molecules that induce metabolic reprogramming.This confers additional cancer phenotypes,including ferroptosis sensitivity.Ferroptosis is a novel mode of cell death characterized by lipid peroxidation that contributes universally to malignant progression.However,it is not fully defined if BAs can influence GC progression by modulating ferroptosis.AIM To reveal the mechanism of BAs regulation in ferroptosis of GC cells.METHODS In this study,we treated GC cells with various stimuli and evaluated the effect of BAs on the sensitivity to ferroptosis.We used gain and loss of function assays to examine the impacts of farnesoid X receptor(FXR)and BTB and CNC homology 1(BACH1)overexpression and knockdown to obtain further insights into the molecular mechanism involved.RESULTS Our data suggested that BAs could reverse erastin-induced ferroptosis in GC cells.This effect correlated with increased glutathione(GSH)concentrations,a reduced GSH to oxidized GSH ratio,and higher GSH peroxidase 4(GPX4)expression levels.Subsequently,we confirmed that BAs exerted these effects by activating FXR,which markedly increased the expression of GSH synthetase and GPX4.Notably,BACH1 was detected as an essential intermediate molecule in the promotion of GSH synthesis by BAs and FXR.Finally,our results suggested that FXR could significantly promote GC cell proliferation,which may be closely related to its anti-ferroptosis effect.CONCLUSION This study revealed for the first time that BAs could inhibit ferroptosis sensitivity through the FXR-BACH1-GSHGPX4 axis in GC cells.This work provided new insights into the mechanism associated with BA-mediated promotion of GC and may help identify potential therapeutic targets for GC patients with BAs reflux.
基金financially supported by the National Natural Science Foundation of China(Nos.52274143 and 51874284).
文摘During the process of constructional backfill mining,the cemented paste backfill(CPB)typically exhibits a high degree of brittleness and limited resistance to failure.In this study,the mechanical and damage evolution characteristics of waste tire steel fiber(WTSF)-modified CPB were studied through uniaxial compression tests,acoustic emission(AE)tests,and scanning electron microscopy(SEM).The results showed that the uniaxial compressive strength(UCS)decreased when the WTSF content was 0.5%,1%,and 1.5%.When the WTSF content reached 1%,the UCS of the modified CPB exhibited a minimal decrease(0.37 MPa)compared to that without WTSF.When the WTSF content was 0.5%,1%,and 1.5%,peak strain of the WTSF-modified CPB increased by 18%,31.33%,and 81.33%,while the elastic modulus decreased by 21.31%,26.21%,and 45.42%,respectively.The addition of WTSF enhances the activity of AE events in the modified CPB,resulting in a slower progression of the entire failure process.After the failure,the modified CPB retained a certain level of load-bearing capacity.Generally,the failure of the CPB was dominated by tensile cracks.After the addition of WTSF,a gradual increase in the proportion of tensile cracks was observed upon loading the modified CPB sample to the pore compaction stage.The three-dimensional localization of AE events showed that the WTSF-modified CPB underwent progressive damage during the loading,and the samples still showed good integrity after failure.Additionally,the response relationship between energy evolution and damage development of WTSF-modified CPB during uniaxial compression was analyzed,and the damage constitutive model of CPB samples with different WTSF contents was constructed.This study provides a theoretical basis for the enhancement of CPB modified by adding WTSF,serving as a valuable reference for the design of CPB constructional backfill.
基金supported by the National Natural Science Foundation of China(22006044,22006043)External Cooperation Program of Science and Technology Planning of Fujian Province(2023I0018)+2 种基金the Fujian Province Science and Technology Program Funds(2020H6013)the National Engineering Laboratory for Mobile Source Emission Control Technology(NELMS2020A03)the Scientific Research Funds of Huaqiao University(605-50Y200270001)。
文摘The Co_(3)O_(4)nanoparticles,dominated by a catalytically active(110)lattice plane,were synthesized as a low-temperature NO_(x) adsorbent to control the cold start emissions from vehicles.These nanoparticles boast a substantial quantity of active chemisorbed oxygen and lattice oxygen,which exhibited a NO_(x) uptake capacity commensurate with Pd/SSZ-13 at 100℃.The primary NO_(x) release temperature falls within a temperature range of 200-350℃,making it perfectly suitable for diesel engines.The characterization results demonstrate that chemisorbed oxygen facilitate nitro/nitrites intermediates formation,contributing to the NO_(x) storage at 100℃,while the nitrites begin to decompose within the 150-200℃range.Fortunately,lattice oxygen likely becomes involved in the activation of nitrites into more stable nitrate within this particular temperature range.The concurrent processes of nitrites decomposition and its conversion to nitrates results in a minimal NO_(x) release between the temperatures of 150-200℃.The nitrate formed via lattice oxygen mainly induces the NO_(x) to be released as NO_(2) within a temperature range of 200-350℃,which is advantageous in enhancing the NO_(x) activity of downstream NH_(3)-SCR catalysts,by boosting the fast SCR reaction pathway.Thanks to its low cost,considerable NO_(x) absorption capacity,and optimal release temperature,Co_(3)O_(4)demonstrates potential as an effective material for passive NO_(x) adsorber applications.
基金supported by the National Natural Science Foundation of China(Grant No.:82273888)Natural Science Foundation of Shandong Province(Grant Nos.ZR2022QH257,ZR2020YQ60)+2 种基金Shandong Major Technological Innovation Project(Project No.:2021CXGC010508)Taishan Scholars Program of Shandong Province(Program Nos.:tsqn202103096,tsqn202211204)Shandong Province Science and Technology Small and Medium Enterprises Innovation Ability Enhancement Project(Project No.:2022TSGC2210).
文摘Eclipta prostrata L.has been used in traditional medicine and known for its liver-protective properties for centuries.Wedelolactone(WEL)and demethylwedelolactone(DWEL)are the major coumarins found in E.prostrata L.However,the comprehensive characterization of these two compounds on non-alcoholic fatty liver disease(NAFLD)still remains to be explored.Utilizing a well-established zebrafish model of thioacetamide(TAA)-induced liver injury,the present study sought to investigate the impacts and mechanisms of WEL and DWEL on NAFLD through integrative spatial metabolomics with liver-specific transcriptomics analysis.Our results showed that WEL and DWEL significantly improved liver function and reduced the accumulation of fat in the liver.The biodistributions and metabolism of these two compounds in whole-body zebrafish were successfully mapped,and the discriminatory endogenous metabolites reversely regulated by WEL and DWEL treatments were also characterized.Based on spatial metabolomics and transcriptomics,we identified that steroid biosynthesis and fatty acid metabolism are mainly involved in the hepatoprotective effects of WEL instead of DWEL.Our study unveils the distinct mechanism of WEL and DWEL in ameliorating NAFLD,and presents a“multi-omics”platform of spatial metabolomics and liver-specific transcriptomics to develop highly effective compounds for further improved therapy.
基金supported by the National Natural Science Foundation of China(No.82272847,82202318,82304417,82303529)The Henan Province Fund for Cultivating Advantageous Disciplines(No.222301420012)+2 种基金Central Plains science and technology innovation leading talent project(No.234200510005)The project tackling of key scientific and technical problems of Henan Provine(No.232102311163)China Postdoctoral Science Foundation(2022TQ0310,2023TQ0307,2023M730971)。
文摘Bacterial-based antitumor immunity has become a promising strategy to activate the immune system for fighting cancer.However,the potential application of bacterial therapy is hindered by the presence of instability and susceptibility to infections within bacterial populations.Furthermore,monotherapy is ineffective in completely eliminating complex cancer with multiple contributing factors.In this study,based on our discovery that spore shell(SS)of Bacillus coagulans exhibits excellent tumor-targeting ability and adjuvant activity,we develop a biomimetic spore nanoplatform to boost bacteria-mediated antitumor therapy,chemodynamic therapy and antitumor immunity for synergistic cancer treatment.In detail,SS is separated from probiotic spores and then attached to the surface of liposome(Lipo)that was loaded with hemoglobin(Hb),glucose oxidase(GOx)and JQ1to construct SS@Lipo/Hb/GOx/JQ1.In tumor tissue,highly toxic hydroxyl radicals(·OH)are generated via sequential catalytic reactions:GOx catalyzing glucose into H_(2)O_(2)and Fe^(2+)in Hb decomposing H_(2)O_(2)into·OH.The combination of·OH and SS adjuvant can improve tumor immunogenicity and activate immune system.Meanwhile,JQ1-mediated down-regulation of PD-L1 and Hb-induced hypoxia alleviation synergistically reshape immunosuppressive tumor microenvironment and potentiate immune response.In this manner,SS@Lipo/Hb/GOx/JQ1 significantly suppresses tumor growth and metastasis.To summarize,the nanoplatform represents an optimum strategy to potentiate bacteria-based cancer immunotherapy.
基金supported by the Preparation and Characterization of Fogging Agents,Cooperative Project of China(Grant No.1900030040)Preparation and Test of Fogging Agents,Cooperative Project of China(Grant No.2200030085)。
文摘Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security.
基金supported by the National Natural Science Foundation of China(No.62271109)。
文摘In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.
基金financial support from the National Natural Science Foundation of China(21878192 and 51904193)the Fundamental Research Funds for the Central Universities(YJ2021141)the Science and Technology Cooperation Special Fund of Sichuan University and Zigong City(2021CDZG-14)
文摘Efficient energy storage devices with suitable electrode materials,that integrate high power and high energy,are the crucial requisites of the renewable power source,which have unwrapped new possibilities in the sustainable development of energy and the environment.Herein,a facile collagen microstructure modulation strategy is proposed to construct a nitrogen/oxygen dual-doped hierarchically porous carbon fiber with ultrahigh specific surface area(2788 m^(2)g^(-1))and large pore volume(4.56 cm^(3)g^(-1))via local microfibrous breakage/disassembly of natural structured proteins.Combining operando spectroscopy and density functional theory unveil that the dual-heteroatom doping could effectively regulate the electronic structure of carbon atom framework with enhanced electric conductivity and electronegativity as well as decreased diffusion resistance in favor of rapid pseudocapacitive-dominated Li^(+)-storage(353 mAh g^(-1)at 10 A g^(-1)).Theoretical calculations reveal that the tailored micro-/mesoporous structures favor the rapid charge transfer and ion storage,synergistically realizing high capacity and superior rate performance for NPCF-H cathode(75.0 mAh g^(-1)at 30 A g^(-1)).The assembled device with NPCF-H as both anode and cathode achieves extremely high energy density(200 Wh kg^(-1))with maximum power density(42600 W kg^(-1))and ultralong lifespan(80%capacity retention over 10000 cycles).
文摘In current research on task offloading and resource scheduling in vehicular networks,vehicles are commonly assumed to maintain constant speed or relatively stationary states,and the impact of speed variations on task offloading is often overlooked.It is frequently assumed that vehicles can be accurately modeled during actual motion processes.However,in vehicular dynamic environments,both the tasks generated by the vehicles and the vehicles’surroundings are constantly changing,making it difficult to achieve real-time modeling for actual dynamic vehicular network scenarios.Taking into account the actual dynamic vehicular scenarios,this paper considers the real-time non-uniform movement of vehicles and proposes a vehicular task dynamic offloading and scheduling algorithm for single-task multi-vehicle vehicular network scenarios,attempting to solve the dynamic decision-making problem in task offloading process.The optimization objective is to minimize the average task completion time,which is formulated as a multi-constrained non-linear programming problem.Due to the mobility of vehicles,a constraint model is applied in the decision-making process to dynamically determine whether the communication range is sufficient for task offloading and transmission.Finally,the proposed vehicular task dynamic offloading and scheduling algorithm based on muti-agent deep deterministic policy gradient(MADDPG)is applied to solve the optimal solution of the optimization problem.Simulation results show that the algorithm proposed in this paper is able to achieve lower latency task computation offloading.Meanwhile,the average task completion time of the proposed algorithm in this paper can be improved by 7.6%compared to the performance of the MADDPG scheme and 51.1%compared to the performance of deep deterministic policy gradient(DDPG).
基金supported by the Industry-University-Research Cooperation Fund Project of the Eighth Research Institute of China Aerospace Science and Technology Corporation (USCAST2022-11)Aeronautical Science Foundation of China (20220001057001)。
文摘This paper presents a novel cooperative value iteration(VI)-based adaptive dynamic programming method for multi-player differential game models with a convergence proof.The players are divided into two groups in the learning process and adapt their policies sequentially.Our method removes the dependence of admissible initial policies,which is one of the main drawbacks of the PI-based frameworks.Furthermore,this algorithm enables the players to adapt their control policies without full knowledge of others’ system parameters or control laws.The efficacy of our method is illustrated by three examples.
文摘The repairing effect of poly(N-vinylpyrrolidone-co-methacrylic acid)on permed or bleached damaged hair was studied.The combing and tensile strength of permed and bleached hair before and after treatment with the copolymer solution were tested,and the effects of the mass fraction of copolymer solution and immerseing time on the combing and tensile strength for permed or bleached damaged hair were investigated.The repair mechanism of permed or bleached damaged hair was also explored.The results show that when the immersing time is 3 hours,the tensile strength of the permed hair increases with the mass fraction of the copolymer solution Tensile strength within 0%-0.3%,but no obvious change is observed when250 Yield strength the mass fraction is over 0.3%.Therefore,the optimal mass 200 fraction of the copolymer solution for repairing the permed hair(cN/dtex)is 0.3%.Similarly,the optimal mass fraction of the copolymer 150strength/solution for repairing the bleached hair is 0.5%.Furthermore,the effects of immersing time on the tensile strength of the100Tensile damaged hair fibers were compared between the permed and90 bleached hair before and after treatment with the copolymer500.40.30.500.10.2 solution.Coincidentally,the optimal immersion time for permedw(P(NVP-co-MAA))/%or bleached damaged hair is both 2 hours.The tensile strength of the permed and bleached hair soaked in 0.3%and 0.5%copolymer solutions for 2 hours increases by 15.55%and 18.12%,respectively,compared to untreated hair.Through infrared spectroscopy analysis,it is found that the amide II band in hair fibers shifted to the blue after repair,with the wave number shift of 11.12 and 11.09 cm^(-1),which confirm the formation of hydrogen bonds in the hair samples.Additionally,the urea hydrogen bond disruption experiment demonstrates that urea does not disrupt the hydrogen bonds in untreated hair fibers,but prevents the formation of new hydrogen bonds in damaged hair fibers.It further validates that the improvement of the tensile strength of the copolymer treated damaged hair fibers is mainly due to the formation of hydrogen bonds.After treatment with the copolymer,the dry and wet combing friction decrease by 30.73%and 28.55%for the permed hair,and decrease by 28.55%and 24.83%for the bleached hairs,respectively.The scanning electron microscope shows that the copolymer can flatten the cuticle and fill the space between the raised cuticles.
基金Natural Science Foundation of Ningxia(2020AAC03403,2020AAC03178)National Natural Science Foundation of China(82260716,82060663).
文摘Colorectal cancer(CRC)is a major global health problem with high morbidity and mortality rates.Surgical resection is the main treatment for early-stage CRC,but detecting it early is challenging.Therefore,effective therapeutic targets for advanced patients are still lacking.Exosomes,tiny vesicles in body fluids,play a crucial role in tumor metastasis,immune regulation,and drug resistance.Interestingly,they can even serve as a biomarker for cancer diagnosis and prognosis.Studies have shown that exosomes can carry miRNA,mediate the polarization of M1/M2 macrophages,promote the proliferation and metastasis of cancer cells,and affect the prognosis of CRC.Since the gastrointestinal tract has many macrophages,understanding the mechanism behind exosomal miRNA-mediated macrophage polarization in CRC treatment is crucial.This article summarizes recent advancements in the study of exosomal miRNAs in CRC and their potential as diagnostic and prognostic markers.
基金National Key Research and Development Program(2022YFC3602400,2023YFC2506502)Shandong Provincial Key Research and Development Program(2021SFGC0503).
文摘In the context of the People's Republic of China,coronary artery disease(CAD)presents a sig-nificant clinical challenge,with over 11.3 mil-lion patients diagnosed.Traditionally,the diagnos-is of CAD has predominantly relied on invasive coronary angiography.[1]However,recent advances in clinical research have revealed a notable trend:a substantial 82% of patients subjected to such invas-ive diagnostics do not necessitate interventional therapy.
文摘It is increasingly relevant to study the effects of climate change on species habitats. Using a maximum entropy model, 22 environmental factors with significant effects on sorghum habitat distribution in China were selected to predict the potential habitat distribution of sorghum in China. The potential distribution of sorghum under baseline climate conditions and future climate conditions (2050s and 2070s) under two climate change scenarios, RCP4.5 and RCP8.5, were simulated, and the receiver operating curve under the accuracy of the model was evaluated using the area under the receiver operating curve (AUC). The results showed that the maximum entropy model predicted the potential sorghum habitat distribution with high accuracy, with Bio2 (monthly mean diurnal temperature difference), Bio6 (minimum temperature in the coldest month), and Bio13 (rainfall in the wettest month) as the main climatic factors affecting sorghum distribution among the 22 environmental factors. Under the baseline climate conditions, potential sorghum habitats are mainly distributed in the southwest, central, and east China. Over time, the potential sorghum habitat expanded into northern and southern China, with significant additions and negligible decreases in potential sorghum habitat in the study area, and a significant increase in total area, with the RCP8.5 scenario adding much more area than the RCP4.5 scenario.