Laminar methane/air premixed flames at different pressures in a newly developed high-pressure laminar burner are studied through Cantera simulation and filtered Rayleigh scattering(FRS).Different gas component fractio...Laminar methane/air premixed flames at different pressures in a newly developed high-pressure laminar burner are studied through Cantera simulation and filtered Rayleigh scattering(FRS).Different gas component fractions are obtained through the detailed numerical simulations.And this approach can be used to correct the FRS images of large variations in a Rayleigh cross section in different flame regimes.The temperature distribution above the flat burner is then presented without stray light interference from soot and wall reflection.Results also show that the extent of agreement with the single point measurement by the thermocouple is<6%.Finally,this study concludes that the relative uncertainty of the presented filtered Rayleigh scattering diagnostics is estimated to be below 10%in single-shot imaging.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.91641118)the Fenglei Youth Innovation Fund of China Aerodynamics and Research Development Center,China(Grant Nos.FLYIF20160017 and PJD20180131).
文摘Laminar methane/air premixed flames at different pressures in a newly developed high-pressure laminar burner are studied through Cantera simulation and filtered Rayleigh scattering(FRS).Different gas component fractions are obtained through the detailed numerical simulations.And this approach can be used to correct the FRS images of large variations in a Rayleigh cross section in different flame regimes.The temperature distribution above the flat burner is then presented without stray light interference from soot and wall reflection.Results also show that the extent of agreement with the single point measurement by the thermocouple is<6%.Finally,this study concludes that the relative uncertainty of the presented filtered Rayleigh scattering diagnostics is estimated to be below 10%in single-shot imaging.