期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
RADIALLY SYMMETRIC SOLUTIONS FOR QUASILINEAR ELLIPTIC EQUATIONS INVOLVING NONHOMOGENEOUS OPERATORS IN AN ORLICZ-SOBOLEV SPACE SETTING
1
作者 Jae-Myoung kim yun-ho kim Jongrak LEE 《Acta Mathematica Scientia》 SCIE CSCD 2020年第6期1679-1699,共21页
We investigate the following elliptic equations:⎧⎩⎨−M(∫R Nϕ(|∇u|2)dx)div(ϕ′(|∇u|2)∇u)+|u|α−2 u=λh(x,u),u(x)→0,as|x|→∞,in R N,where N≥2,1<p<q<N,α<q,1<α≤p∗q′/p′with p∗=NpN−p,ϕ(t)behaves like ... We investigate the following elliptic equations:⎧⎩⎨−M(∫R Nϕ(|∇u|2)dx)div(ϕ′(|∇u|2)∇u)+|u|α−2 u=λh(x,u),u(x)→0,as|x|→∞,in R N,where N≥2,1<p<q<N,α<q,1<α≤p∗q′/p′with p∗=NpN−p,ϕ(t)behaves like t q/2 for small t and t p/2 for large t,and p′and q′are the conjugate exponents of p and q,respectively.We study the existence of nontrivial radially symmetric solutions for the problem above by applying the mountain pass theorem and the fountain theorem.Moreover,taking into account the dual fountain theorem,we show that the problem admits a sequence of small-energy,radially symmetric solutions. 展开更多
关键词 radial solution quasilinear elliptic equations variational methods Orlicz-Sobolev spaces
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部