We report the physical properties of ThRu_(3)Si_(2)featured with distorted Ru kagome lattice.The combined experiments of resistivity,magnetization and specific heat reveal bulk superconductivity with T_(c)=3.8 K.The s...We report the physical properties of ThRu_(3)Si_(2)featured with distorted Ru kagome lattice.The combined experiments of resistivity,magnetization and specific heat reveal bulk superconductivity with T_(c)=3.8 K.The specific heat jump and calculated electron–phonon coupling indicate a moderate coupled BCS superconductor.In comparison with LaRu_(3)Si_(2),the calculated electronic structure in ThRu_(3)Si_(2)shows an electron-doping effect with electron filling lifted from 100 meV below flat bands to 300 meV above it.This explains the lower superconducting transition temperature and weaker electron correlations observed in ThRu_(3)Si_(2).Our work suggests the Tc and electronic correlations in the kagome superconductor could have an intimate connection with the flat bands.展开更多
The electronic structure of iron-pnictide compound superconductor Ba_2Ti_2Fe_2As_4O, which has metallic intermediate Ti_2O layers, is studied using angle-resolved photoemission spectroscopy. The Ti-related bands show ...The electronic structure of iron-pnictide compound superconductor Ba_2Ti_2Fe_2As_4O, which has metallic intermediate Ti_2O layers, is studied using angle-resolved photoemission spectroscopy. The Ti-related bands show a‘peak-dip-hump' line shape with two branches of dispersion associated with the polaronic states at temperatures below around 120 K. This change in the spectra occurs along with the resistivity anomaly that was not clearly understood in a previous study. Moreover, an energy gap induced by the superconducting proximity effect opens in the polaronic bands at temperatures below T_c(~21 K). Our study provides the spectroscopic evidence that superconductivity coexists with polarons in the same bands near the Fermi level, which provides a suitable platform to study interactions between charge, lattice and spin freedoms in a correlated system.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12050003,12004337,and 12274369)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ21A040011)。
文摘We report the physical properties of ThRu_(3)Si_(2)featured with distorted Ru kagome lattice.The combined experiments of resistivity,magnetization and specific heat reveal bulk superconductivity with T_(c)=3.8 K.The specific heat jump and calculated electron–phonon coupling indicate a moderate coupled BCS superconductor.In comparison with LaRu_(3)Si_(2),the calculated electronic structure in ThRu_(3)Si_(2)shows an electron-doping effect with electron filling lifted from 100 meV below flat bands to 300 meV above it.This explains the lower superconducting transition temperature and weaker electron correlations observed in ThRu_(3)Si_(2).Our work suggests the Tc and electronic correlations in the kagome superconductor could have an intimate connection with the flat bands.
基金Supported by the National Basic Research Program of China under Grant Nos 2013CB921700,2015CB921300 and2015CB921301the National Natural Science Foundation of China under Grant Nos 11234014,11622435,11274362,11674371 and11474340+1 种基金the National Key Research and Development Program of China under Grant Nos 2016YFA0300300,2016YFA0300600,2016YFA0401000 and 2016YFA0400902the Open Large Infrastructure Research of Chinese Academy of Sciences,and the Pioneer Hundred Talents Program(Type C)of Chinese Academy of Sciences
文摘The electronic structure of iron-pnictide compound superconductor Ba_2Ti_2Fe_2As_4O, which has metallic intermediate Ti_2O layers, is studied using angle-resolved photoemission spectroscopy. The Ti-related bands show a‘peak-dip-hump' line shape with two branches of dispersion associated with the polaronic states at temperatures below around 120 K. This change in the spectra occurs along with the resistivity anomaly that was not clearly understood in a previous study. Moreover, an energy gap induced by the superconducting proximity effect opens in the polaronic bands at temperatures below T_c(~21 K). Our study provides the spectroscopic evidence that superconductivity coexists with polarons in the same bands near the Fermi level, which provides a suitable platform to study interactions between charge, lattice and spin freedoms in a correlated system.