Isolating reductive silver kernel from shell is a challenging task but is quite important to understand the embryonic form during the formation of silver nanoclusters.The intercalation of suitable anionic species may ...Isolating reductive silver kernel from shell is a challenging task but is quite important to understand the embryonic form during the formation of silver nanoclusters.The intercalation of suitable anionic species may be of benefit for passivating then capturing such highly active kernel.Herein,we successfully isolated a novel silver thiolate nanocluster[Ag_(13)@Ag_(76)S_(16)(Cyh S)_(42)(p-NH_(2)-Ph As O_(3))_(4)]^(3+)(SD/Ag89 a,Cyh SH=cyclohexanethiol)that contains a well-isolated icosahedral Ag_(13) kernel passivated by four Ag S_(4)^(7-) tetrahedra and four p-NH_(2) Ph As O_(3)^(2-) piercing from outer Ag_(72) shell.Of note,this Ag_(13) kernel is the largest isolable subvalent silver kernel beneath the silver shell with extremely legible core-shell boundary ever before and represents a precise embryonic model formed in the reducing Ag(I)to Ag(0)followed by aggregating to large silver nanoparticles.The reductive role of DMF and the introduction of anionic passivation layer(APL)synergistically modulate the reduction kinetics,facilitating the capture of ultrasmall subvalent silver kernel.SD/Ag89 a emits in near infrared(NIR)region(λ_(em)=800 nm)at low temperature.The synthetic strategy shown in this work opens up new opportunities for precisely capturing and recognizing diverse reductive silver kernels in different systems.展开更多
A new metal-organic framework(MOF) based on metal clusters as secondary building units(SBU),has been synthesized and structurally characterized.The reported MOF presents an interesting 8-connected self-penetrating...A new metal-organic framework(MOF) based on metal clusters as secondary building units(SBU),has been synthesized and structurally characterized.The reported MOF presents an interesting 8-connected self-penetrating coordination network based on dinuclear cadmium cluster with a 4^(24)·5·6~3 topology. Moreover,the thermal stability and luminescence property of this compound have been investigated.展开更多
基金supported by the National Natural Science Foundation of China(91961105,21822107,21827801)the Fok Ying Tong Education Foundation(171009)+3 种基金the Natural Science Foundation of Shandong Province(ZR2019ZD45,JQ201803,ZR2020ZD35)the Taishan Scholar Project of Shandong Province of China(tsqn201812003,ts20190908)the Qilu Youth Scholar Funding of Shandong UniversityProject for Scientific Research Innovation Team of Young Scholar in Colleges and Universities of Shandong Province(2019KJC028)。
文摘Isolating reductive silver kernel from shell is a challenging task but is quite important to understand the embryonic form during the formation of silver nanoclusters.The intercalation of suitable anionic species may be of benefit for passivating then capturing such highly active kernel.Herein,we successfully isolated a novel silver thiolate nanocluster[Ag_(13)@Ag_(76)S_(16)(Cyh S)_(42)(p-NH_(2)-Ph As O_(3))_(4)]^(3+)(SD/Ag89 a,Cyh SH=cyclohexanethiol)that contains a well-isolated icosahedral Ag_(13) kernel passivated by four Ag S_(4)^(7-) tetrahedra and four p-NH_(2) Ph As O_(3)^(2-) piercing from outer Ag_(72) shell.Of note,this Ag_(13) kernel is the largest isolable subvalent silver kernel beneath the silver shell with extremely legible core-shell boundary ever before and represents a precise embryonic model formed in the reducing Ag(I)to Ag(0)followed by aggregating to large silver nanoparticles.The reductive role of DMF and the introduction of anionic passivation layer(APL)synergistically modulate the reduction kinetics,facilitating the capture of ultrasmall subvalent silver kernel.SD/Ag89 a emits in near infrared(NIR)region(λ_(em)=800 nm)at low temperature.The synthetic strategy shown in this work opens up new opportunities for precisely capturing and recognizing diverse reductive silver kernels in different systems.
基金supported by the National Science Foundation of China(No.51073079)the Natural Science Fund of Tianjin,China (No.10JCZDJC22100)the Fundamental Research Funds for the Central Universities
文摘A new metal-organic framework(MOF) based on metal clusters as secondary building units(SBU),has been synthesized and structurally characterized.The reported MOF presents an interesting 8-connected self-penetrating coordination network based on dinuclear cadmium cluster with a 4^(24)·5·6~3 topology. Moreover,the thermal stability and luminescence property of this compound have been investigated.