期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Lateral magnetic stiffness under different parameters in a high-temperature superconductor levitation system
1
作者 Yong Yang yun-yi wu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第7期515-525,共11页
Magnetic stiffness determines the stability of a high-temperature superconductor(HTS)magnetic levitation system.The quantitative properties of the physical and geometrical parameters that affect the stiffness of HTS l... Magnetic stiffness determines the stability of a high-temperature superconductor(HTS)magnetic levitation system.The quantitative properties of the physical and geometrical parameters that affect the stiffness of HTS levitation systems should be identified for improving the stiffness by some effective methods.The magnetic stiffness is directly related to the first-order derivative of the magnetic force with respect to the corresponding displacement,which indicates that the effects of the parameters on the stiffness should be different from the relationships between the forces and the same parameters.In this paper,we study the influences of some physical and geometrical parameters,including the strength of the external magnetic field(B0)produced by a rectangular permanent magnet(PM),critical current density(Jc),the PM-to-HTS area ratio(α),and thickness ratio(β),on the lateral stiffness by using a numerical approach under zero-field cooling(ZFC)and field cooling(FC)conditions.In the first and second passes of the PM,the lateral stiffness at most of lateral positions essentially increases with B0 increasing and decreases withβincreasing in ZFC and FC.The largest lateral stiffness at every lateral position is almost produced by the minimum value of Jc,which is obviously different from the lateral force–Jc relation.Theα-dependent lateral stiffness changes with some parameters,which include the cooling conditions of the bulk HTS,lateral displacement,and movement history of the PM.These findings can provide some suggestions for improving the lateral stiffness of the HTS levitation system. 展开更多
关键词 high-temperature superconductor magnetic levitation lateral stiffness lateral force
下载PDF
Angular dependence of vertical force and torque when magnetic dipole moves vertically above flat high-temperature superconductor
2
作者 Yong Yang Shuai-Jie Yang +1 位作者 Wen-Li Yang yun-yi wu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第12期571-576,共6页
The interaction between a permanent magnet(PM)assumed as a magnetic dipole and a flat high-temperature superconductor(HTS)is calculated by the advanced frozen-image model.When the dipole vertically moves above the sem... The interaction between a permanent magnet(PM)assumed as a magnetic dipole and a flat high-temperature superconductor(HTS)is calculated by the advanced frozen-image model.When the dipole vertically moves above the semiinfinite HTS,the general analytical expression of vertical force and that of torque are obtained for an arbitrary angle between the magnetization direction of the PM and the c axis of the HTS.The variations of the force and torque are analyzed for angle and vertical movements in both zero-field cooling(ZFC)condition and field cooling(FC)condition.It is found that the maximum vertical repulsive or attractive force has the positive or negative cosine relation with the angle.However,the maximum torque has the positive or negative sine relation.From the viewpoint of the rotational equilibrium,the orientation of the magnetic dipole with zero angle is deemed to be an unstable equilibrium point in ZFC,but the same orientation is considered as a stable equilibrium point in FC.In addition,both of the variation cycles of the maximum force and torque with the angle areπ. 展开更多
关键词 high-temperature superconductor magnetic dipole frozen-image model angle
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部