期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Controllable transmission of vector beams in dichroic medium 被引量:1
1
作者 yun-ke li Jin-Wen Wang +6 位作者 Xin Yang Yun Chen Xi-Yuan Chen Ming-Tao Cao Dong Wei Hong Gao Fu-li li 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第1期395-399,共5页
Vector beams with spatially varying polarization distribution in the wavefront plane have received increasing attention in recent years. The manipulation of vector beams both in intensity and polarization distribution... Vector beams with spatially varying polarization distribution in the wavefront plane have received increasing attention in recent years. The manipulation of vector beams both in intensity and polarization distributions is highly desired and under development. In this work, we study the transmission property of vector beams through warm rubidium vapor and realize controllable transmission of vector beams based on atomic dichroism. By utilizing the linearly polarized beam and vector beams as the pump and probe beams in a pump–probe configuration, a spatially-dependent dichroism can be obtained,which leads to spatially varied absorption of the probe beam. The controllable intensity distribution of the probe beam, as a two-petal pattern, can rotate with the variation of the pump beam's polarization states. We experimentally demonstrate the mechanism of dichroism with linear polarization light and provide an explanation based on the optical pumping effect.Alternatively, the varying trend of the probe beam's intensity is also interpreted by utilizing the Jones matrix. Our results are thus beneficial for providing potential applications in optical manipulation in atomic ensembles. 展开更多
关键词 QUANTUM OPTICS POLARIZATION DICHROISM
下载PDF
All-Polymer Solar Cells with Perylenediimide Polymer Acceptors 被引量:3
2
作者 Yi-kun Guo yun-ke li +2 位作者 Han Han 颜河 赵达慧 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2017年第2期293-301,共9页
Four polymers based on perylenediimide co-polymerized with thiophene, bithiophene, selenophone and thieno[3,2-b]thiophene were investigated as the acceptor materials in all-polymer solar cells. Two different donor pol... Four polymers based on perylenediimide co-polymerized with thiophene, bithiophene, selenophone and thieno[3,2-b]thiophene were investigated as the acceptor materials in all-polymer solar cells. Two different donor polymers, poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[ 1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4- b]thiophene)-2-carboxylate-2,6-diyl] (PTB7-Th) and poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3'-di(2- dodecyltetradecyl)-2,2';5',2";5",2'-quaterthiophen-5,5'"-diyl)] (PffBT4T-2DT), with suitably complementary absorption spectra and energy levels were applied and examined. Among all different donor-acceptor pairs studied here, the combination of PTB7-Th:poly[NN-bis(1-hexylheptyl)-3,4,9,10-pery,enediimide-1,6/1,7-diyl-alt-2,5-thiophene] (PDI-Th) exhibited the best power conversion efficiency (PCE) of 5.13%, with open-circuit voltage (Vo:) = 0.79 lV, short-circuit current density (Jsc) = 12.35 mA.cm-2 and fill-factor (FF) = 0.52. The polymer of PDI-Th acceptor used here had a regio-irregular backbone, conveniently prepared from a mixture of 1,6- and 1,7-dibromo-PDI. It is also noteworthy that neither additive nor post- treatment is required for obtaining such a cell performance. 展开更多
关键词 All-polymer solar cells Polymer acceptor Perylenediimides Donor-acceptor pair
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部