Ultrafine-grained aluminum processed by a new severe plastic deformation technique, accumulative extrusion bonding (AEB), was investigated. Microstructural characterization indicated good interfacial bonding and an av...Ultrafine-grained aluminum processed by a new severe plastic deformation technique, accumulative extrusion bonding (AEB), was investigated. Microstructural characterization indicated good interfacial bonding and an average grain size of ~440 nm was obtained after six passes. Tensile testing revealed that the strength reached the maximum value of 195 MPa and the total elongation exceeded 16% after five passes. The hardness was also significantly improved and almost reached saturation after the first pass. SEM fractography of AEB-processed specimens after tensile test showed that failure mode was shear ductile fracture with elongated shallow dimples. Comparison with conventional accumulative roll bonding indicates that this new AEB technique is more effective in refining grain and improving mechanical properties of the specimens.展开更多
基金Project(2016YFB0301104) supported by the National Key Research and Development Program of ChinaProjects(51671041,51531002) supported by the National Natural Science Foundation of ChinaProject(cstc2017jcyjBX0040) supported by the Natural Science Foundation of Chongqing City,China
文摘Ultrafine-grained aluminum processed by a new severe plastic deformation technique, accumulative extrusion bonding (AEB), was investigated. Microstructural characterization indicated good interfacial bonding and an average grain size of ~440 nm was obtained after six passes. Tensile testing revealed that the strength reached the maximum value of 195 MPa and the total elongation exceeded 16% after five passes. The hardness was also significantly improved and almost reached saturation after the first pass. SEM fractography of AEB-processed specimens after tensile test showed that failure mode was shear ductile fracture with elongated shallow dimples. Comparison with conventional accumulative roll bonding indicates that this new AEB technique is more effective in refining grain and improving mechanical properties of the specimens.