Although biomass-derived carbon(biochar)has been widely used in the energy field,the relation between the carbonization condition and the physical/chemical property of the product remains elusive.Here,we revealed the ...Although biomass-derived carbon(biochar)has been widely used in the energy field,the relation between the carbonization condition and the physical/chemical property of the product remains elusive.Here,we revealed the carbonization condition's effect on the morphology,surface property,and electrochemical performance of the obtained carbon.An open slit pore structure with shower-puff-like nanoparticles can be obtained by finely tuning the carbonization temperature,and its unique pore structure and surface properties enable the Li–O_(2) battery with cycling longevity(221 cycles with 99.8%Coulombic efficiency at 0.2 mA cm^(−2) and controlled discharge–charge depths of 500 mAh g^(−1))and high capacity(16,334 mAh g^(−1) at 0.02 mA cm^(−2)).This work provides a greater understanding of the mechanism of the biochar carbonization procedure under various pyrolysis conditions,paving the way for future study of energy storage devices.展开更多
Fe-based Prussian blue(Fe-PB)cathode material shows great application potential in sodium(Na)-ion batteries due to its high theoretical capacity,long cycle life,low cost,and simple preparation process.However,the crys...Fe-based Prussian blue(Fe-PB)cathode material shows great application potential in sodium(Na)-ion batteries due to its high theoretical capacity,long cycle life,low cost,and simple preparation process.However,the crystalline water and vacancies of Fe-PB lattice,the low electrical conductivity,and the dissolution of metal ions lead to limited capacity and poor cycling stability.In this work,a perylene tetracarboxylic dianhydride amine(PTCDA)coating layer is successfully fabricated on the surface of Fe-PB by a liquid-phase method.The aminated PTCDA(PTCA)coating not only increases the specific surface area and electronic conductivity but also effectively reduces the crystalline water and vacancies,which avoids the erosion of Fe-PB by electrolyte.Consequently,the PTCA layer reduces the charge transfer resistance,enhances the Na-ion diffusion coefficient,and improves the structure stability.The PTCA-coated Fe-PB exhibits superior Na storage performance with a first discharge capacity of 145.2 mAh g^(−1) at 100 mA g^(−1).Long cycling tests exhibit minimal capacity decay of 0.027%per cycle over 1000 cycles at 1 A g^(−1).Therefore,this PTCA coating strategy has shown promising competence in enhancing the electrochemical performance of Fe-PB,which can potentially serve as a universal electrode coating strategy for Na-ion batteries.展开更多
Lithium metal shows a great advantage as the most promising anode for its unparalleled theoretical specific capacity and extremely low electrochemical potential.However,uncontrolled lithium dendrite growth and severe ...Lithium metal shows a great advantage as the most promising anode for its unparalleled theoretical specific capacity and extremely low electrochemical potential.However,uncontrolled lithium dendrite growth and severe side reactions of the reactive intermediates and organic electrolytes still limit the broad application of lithium metal batteries.Herein,we propose 4-nitrobenzenesulfonyl fluoride(NBSF)as an electrolyte additive for forming a stable organic-inorganic hybrid solid electrolyte interphase(SEI)layer on the lithium surface.The abundance of lithium fluoride and lithium nitride can guarantee the SEI layer's toughness and high ionic conductivity,achieving dendrite-free lithium deposition.Meanwhile,the phenyl group of NBSF significantly contributes to both the chemical stability of the SEI layer and the good adaptation to volume changes of the lithium anode.The lithium-oxygen batteries with NBSF exhibit prolonged cycle lives and excellent cycling stability.This simple approach is hoped to improve the development of the organic-inorganic SEI layer to stabilize the lithium anodes for lithium-oxygen batteries.展开更多
A great challenge for all aqueous batteries,including Zn-metal batteries,is the parasitic hydrogen evolution reaction on the low-potential anode.Herein,we report the formula of a highly concentrated aqueous electrolyt...A great challenge for all aqueous batteries,including Zn-metal batteries,is the parasitic hydrogen evolution reaction on the low-potential anode.Herein,we report the formula of a highly concentrated aqueous electrolyte that mitigates hydrogen evolution by transforming water molecules more inert.The electrolyte comprises primarily ZnCl_(2) and LiCl as an additive,both of which are inexpensive salts.The O-H covalent bonds in water get strengthened in a chemical environment that has fewer hydrogen bonding interactions and a greater number of Zn-Cl superhalides,as suggested by integrated characterization and simulation.As a result,the average Coulombic efficiency of zincmetal anode is raised to an unprecedented>99.7%at 1mA cm^(−2).In the new electrolyte,the plating/stripping processes leave the zinc-metal anode dendrite-free,and the zinc-metal anode delivers stable plating/stripping cycles for 4000 hours with an areal capacity of 4 mAh cm^(−2) at 2mA cm^(−2).Furthermore,the high Coulombic efficiency of zinc-metal anode in the ZnCl_(2)-LiCl mixture electrolyte is demonstrated in full cells with a limited anode.The V_(2)O_(5)·H_(2)O||Zn full cell with an N/P mass ratio of 1.2 delivers a stable life of more than 2500 cycles,and the LiMn_(2)O_(4)||Zn hybrid cell with an N/P mass ratio of 0.6 exhibits 1500 cycles in its stable life.展开更多
The present study explored a new method to improve the catalytic activity of non-precious metals, especially in electrochemical reactions. Highly ionized Fe plasma produced by arc discharge was uniformly deposited on ...The present study explored a new method to improve the catalytic activity of non-precious metals, especially in electrochemical reactions. Highly ionized Fe plasma produced by arc discharge was uniformly deposited on a porous carbon substrate and formed atomic clusters on the carbon surface. The as-prepared FeO~/C material was tested as a cathode material in a rechargeable Li-02 battery under different current rates. The results showed significant improvement in battery performance in terms of both cycle life and reaction rate. Furthermore, X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the as-prepared cathode material stabilized the cathode and reduced side reactions and that the current rate was a critical factor in the nucleation of the discharge products.展开更多
Aqueous batteries have engendered increasing attention as promising solutions for stationary energy storage due to their potentially low cost and innate safety.In various aqueous battery systems,Prussian blue analogue...Aqueous batteries have engendered increasing attention as promising solutions for stationary energy storage due to their potentially low cost and innate safety.In various aqueous battery systems,Prussian blue analogues(PBAs)represent a class of promising electrode materials with fascinating electrochemical performance,owing to their large open frameworks,abundant ion insertion sites,and facile preparation.To date,PBAs have shown substantial progress towards storage of alkali metal ions(Li^(+),Na^(+),and K^(+)),H^(+),and NH4^(+) in aqueous electrolytes,which,however,has yet not been specifically summarized.This review selects some representative research to introduce the progress of PBAs in these battery systems and aims to discuss the crucial role of ionic charge carrier in affecting the overall electrode performance.Besides,some critical knowledge gaps and challenges of PBA materials have been pointed out for future development.展开更多
基金supported by the National Natural Science Foundation of China(NSFC No.22179005)the BIT Research and Innovation Promoting Project(Grant No.2022YCXY008)supported by Cunzhong Zhang at the Beijing Institute of Technology.
文摘Although biomass-derived carbon(biochar)has been widely used in the energy field,the relation between the carbonization condition and the physical/chemical property of the product remains elusive.Here,we revealed the carbonization condition's effect on the morphology,surface property,and electrochemical performance of the obtained carbon.An open slit pore structure with shower-puff-like nanoparticles can be obtained by finely tuning the carbonization temperature,and its unique pore structure and surface properties enable the Li–O_(2) battery with cycling longevity(221 cycles with 99.8%Coulombic efficiency at 0.2 mA cm^(−2) and controlled discharge–charge depths of 500 mAh g^(−1))and high capacity(16,334 mAh g^(−1) at 0.02 mA cm^(−2)).This work provides a greater understanding of the mechanism of the biochar carbonization procedure under various pyrolysis conditions,paving the way for future study of energy storage devices.
基金National Key Research and Development Program of China,Grant/Award Number:2022YFB3807700Hubei Natural Science Foundation Innovation Group Project,Grant/Award Number:2022CFA020+2 种基金Joint Funds of the Hubei Natural Science Foundation Innovation and Development,Grant/Award Number:2022CFD034Major Technological Innovation Project of Hubei Science and Technology Department,Grant/Award Number:2019AAA164National Natural Science Foundation of China,Grant/Award Number:2022CFD034。
文摘Fe-based Prussian blue(Fe-PB)cathode material shows great application potential in sodium(Na)-ion batteries due to its high theoretical capacity,long cycle life,low cost,and simple preparation process.However,the crystalline water and vacancies of Fe-PB lattice,the low electrical conductivity,and the dissolution of metal ions lead to limited capacity and poor cycling stability.In this work,a perylene tetracarboxylic dianhydride amine(PTCDA)coating layer is successfully fabricated on the surface of Fe-PB by a liquid-phase method.The aminated PTCDA(PTCA)coating not only increases the specific surface area and electronic conductivity but also effectively reduces the crystalline water and vacancies,which avoids the erosion of Fe-PB by electrolyte.Consequently,the PTCA layer reduces the charge transfer resistance,enhances the Na-ion diffusion coefficient,and improves the structure stability.The PTCA-coated Fe-PB exhibits superior Na storage performance with a first discharge capacity of 145.2 mAh g^(−1) at 100 mA g^(−1).Long cycling tests exhibit minimal capacity decay of 0.027%per cycle over 1000 cycles at 1 A g^(−1).Therefore,this PTCA coating strategy has shown promising competence in enhancing the electrochemical performance of Fe-PB,which can potentially serve as a universal electrode coating strategy for Na-ion batteries.
基金The authors gratefully acknowledge the support of the National Natural Science Foundation(Grant No.22109131,52077180)Sichuan Province Innovative Talent Funding Project for Postdoctoral Fellows,Young Elite Scientists Sponsorship Program(CAST,2022QNRC001)+1 种基金the Natural Science Foundation of Sichuan Province(No.2022NSFSC0247)Southwest Jiaotong University's New Interdisciplinary Cultivation Fund(No.2682022KJ028).
文摘Lithium metal shows a great advantage as the most promising anode for its unparalleled theoretical specific capacity and extremely low electrochemical potential.However,uncontrolled lithium dendrite growth and severe side reactions of the reactive intermediates and organic electrolytes still limit the broad application of lithium metal batteries.Herein,we propose 4-nitrobenzenesulfonyl fluoride(NBSF)as an electrolyte additive for forming a stable organic-inorganic hybrid solid electrolyte interphase(SEI)layer on the lithium surface.The abundance of lithium fluoride and lithium nitride can guarantee the SEI layer's toughness and high ionic conductivity,achieving dendrite-free lithium deposition.Meanwhile,the phenyl group of NBSF significantly contributes to both the chemical stability of the SEI layer and the good adaptation to volume changes of the lithium anode.The lithium-oxygen batteries with NBSF exhibit prolonged cycle lives and excellent cycling stability.This simple approach is hoped to improve the development of the organic-inorganic SEI layer to stabilize the lithium anodes for lithium-oxygen batteries.
基金XJ thanks Oregon State University for AID program support.J-XJ thanks the financial support from the National Natural Science Foundation of China(21574077 and 21304055)111 project(B14041)+3 种基金the Fundamental Research Funds for the Central Universities(GK201801001)CZ is supported by a fellowship from the China Scholarship Council(201706870033)CF is grateful to the U.S.National Science Foundation CAREER grant(CHE-1455353)the support of the femtosecond stimulated Raman instrumentation and the NSF MRI grant(DMR-1920368)for additional support.
文摘A great challenge for all aqueous batteries,including Zn-metal batteries,is the parasitic hydrogen evolution reaction on the low-potential anode.Herein,we report the formula of a highly concentrated aqueous electrolyte that mitigates hydrogen evolution by transforming water molecules more inert.The electrolyte comprises primarily ZnCl_(2) and LiCl as an additive,both of which are inexpensive salts.The O-H covalent bonds in water get strengthened in a chemical environment that has fewer hydrogen bonding interactions and a greater number of Zn-Cl superhalides,as suggested by integrated characterization and simulation.As a result,the average Coulombic efficiency of zincmetal anode is raised to an unprecedented>99.7%at 1mA cm^(−2).In the new electrolyte,the plating/stripping processes leave the zinc-metal anode dendrite-free,and the zinc-metal anode delivers stable plating/stripping cycles for 4000 hours with an areal capacity of 4 mAh cm^(−2) at 2mA cm^(−2).Furthermore,the high Coulombic efficiency of zinc-metal anode in the ZnCl_(2)-LiCl mixture electrolyte is demonstrated in full cells with a limited anode.The V_(2)O_(5)·H_(2)O||Zn full cell with an N/P mass ratio of 1.2 delivers a stable life of more than 2500 cycles,and the LiMn_(2)O_(4)||Zn hybrid cell with an N/P mass ratio of 0.6 exhibits 1500 cycles in its stable life.
文摘The present study explored a new method to improve the catalytic activity of non-precious metals, especially in electrochemical reactions. Highly ionized Fe plasma produced by arc discharge was uniformly deposited on a porous carbon substrate and formed atomic clusters on the carbon surface. The as-prepared FeO~/C material was tested as a cathode material in a rechargeable Li-02 battery under different current rates. The results showed significant improvement in battery performance in terms of both cycle life and reaction rate. Furthermore, X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the as-prepared cathode material stabilized the cathode and reduced side reactions and that the current rate was a critical factor in the nucleation of the discharge products.
基金support from U.S.National Science Foundation Award No.DMR 2004636.
文摘Aqueous batteries have engendered increasing attention as promising solutions for stationary energy storage due to their potentially low cost and innate safety.In various aqueous battery systems,Prussian blue analogues(PBAs)represent a class of promising electrode materials with fascinating electrochemical performance,owing to their large open frameworks,abundant ion insertion sites,and facile preparation.To date,PBAs have shown substantial progress towards storage of alkali metal ions(Li^(+),Na^(+),and K^(+)),H^(+),and NH4^(+) in aqueous electrolytes,which,however,has yet not been specifically summarized.This review selects some representative research to introduce the progress of PBAs in these battery systems and aims to discuss the crucial role of ionic charge carrier in affecting the overall electrode performance.Besides,some critical knowledge gaps and challenges of PBA materials have been pointed out for future development.