We utilize both analytical and numerical methods to study the superconducting transition temperature Tnear a fermionic quantum critical point(QCP) using a model constructed by Xu et al. [Phys. Rev. X 7, 031059(2017)] ...We utilize both analytical and numerical methods to study the superconducting transition temperature Tnear a fermionic quantum critical point(QCP) using a model constructed by Xu et al. [Phys. Rev. X 7, 031059(2017)] as an example. In this model, the bosonic critical fluctuation plays the role of pairing glue for the Cooper pairs, and we use a Bardeen–Cooper–Schrieffer-type mean-field theory to estimate T. We further argue that the Tc computed from the BCS theory approximates a pseudogap temperature TPG, instead of the Berezinskii–Kosterlitz–Thouless transition temperature T, which is confirmed by our determinant quantum Monte Carlo simulation. Moreover, due to the fact that electron density of state starts to deplete at T, the critical scaling of the underlying QCP is also affected below TPG. Thus, when studying the critical behavior of fermionic QCPs, we need to monitor that the temperature is above TPG instead of T. This was often ignored in previous studies.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11874115)the support from the Research Grants Council of Hong Kong SAR of China(Grant Nos.17303019,17301420,17301721,17309822,and AoE/P-701/20)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33000000)the K.C.Wong Education Foundation(Grant No.GJTD-2020-01)the Seed Funding“QuantumInspired explainable-AI”at the HKUTCL Joint Research Centre for Artificial Intelligence。
文摘We utilize both analytical and numerical methods to study the superconducting transition temperature Tnear a fermionic quantum critical point(QCP) using a model constructed by Xu et al. [Phys. Rev. X 7, 031059(2017)] as an example. In this model, the bosonic critical fluctuation plays the role of pairing glue for the Cooper pairs, and we use a Bardeen–Cooper–Schrieffer-type mean-field theory to estimate T. We further argue that the Tc computed from the BCS theory approximates a pseudogap temperature TPG, instead of the Berezinskii–Kosterlitz–Thouless transition temperature T, which is confirmed by our determinant quantum Monte Carlo simulation. Moreover, due to the fact that electron density of state starts to deplete at T, the critical scaling of the underlying QCP is also affected below TPG. Thus, when studying the critical behavior of fermionic QCPs, we need to monitor that the temperature is above TPG instead of T. This was often ignored in previous studies.