Composite Si@SiO_(x)/C anodes with high specific capacity are considered the most promising alternatives to graphite in industrial lithium-ion batteries.However,their cycling stability remains a limiting factor,which ...Composite Si@SiO_(x)/C anodes with high specific capacity are considered the most promising alternatives to graphite in industrial lithium-ion batteries.However,their cycling stability remains a limiting factor,which originates from the severe volume deformation of silicon-derived species.In this work,the cyclabilities of composite anodes are improved by unshackling the highly reversible lithium storage capabilities from the redundancy capacity of the anode materials.A selective LiF-induced lithiation strategy is proposed based on exploiting interface separation energy differences between LiF and the active materials.An interesting preferential redeposition of LiF is observed at the Si@SiO_(x) particles,which differentiates the otherwise similar lithiation potentials of LiC_(x) and Li_(15)Si_(4),thereby enabling lithium storage in graphite that was previously underused.The resulting full cell exhibits better rate and cycling performances without sacrificing specific capacity.In an ultra-high area capacity full cell(4.9 mA h cm^(-2)),the capacity retention increases markedly from 66.1% to 94.2% after 300 cycles.The selective lithiation strategy developed herein is feasible for practical industrial applications,and importantly,it requires no changes to the existing mature lithium-ion battery manufacturing process.This study offers a new approach for the development of silicon/graphite composite anodes with long cycling lifetimes.展开更多
The three-dimensional porous network polytetrafluoroethylene (PTFE) thin films were achieved by a vacuum technique through evaporating the pure PTFE powders. The surfaces of PTFE thin films showed various morphologi...The three-dimensional porous network polytetrafluoroethylene (PTFE) thin films were achieved by a vacuum technique through evaporating the pure PTFE powders. The surfaces of PTFE thin films showed various morphologies by adjusting the evaporation temperature and the corresponding contact angle ranging from 133° to 155°. Further analyses of surface chemical composition and morphology by FTIR and FE-SEM revealed that the origin of hydrophobicity for the PTFE thin films could be ascribed to the fluorine-containing groups and the surface morphologies, indicating that abundant -CF2 groups and network structures with appropriate pore sizes played a vital role in superhydrophobicity. By characterization of UV-Vis, the films also showed high transmittance and antireflection effect. The films prepared by this simple method have potential applications such as waterproof membrane and self-cleaning coating.展开更多
基金supported by the Key-Area Research and Development Program of Guangdong Province(2020B090919005)the National Key R&D Program of China(2017YFE0127600)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010600)Taishan Scholars Program for Young Expert of Shandong Province(tsqn 202103145)the National Natural Science Foundation of China(22179135)the Finance Science and Technology Project of Hainan province(ZDKJ202014)。
文摘Composite Si@SiO_(x)/C anodes with high specific capacity are considered the most promising alternatives to graphite in industrial lithium-ion batteries.However,their cycling stability remains a limiting factor,which originates from the severe volume deformation of silicon-derived species.In this work,the cyclabilities of composite anodes are improved by unshackling the highly reversible lithium storage capabilities from the redundancy capacity of the anode materials.A selective LiF-induced lithiation strategy is proposed based on exploiting interface separation energy differences between LiF and the active materials.An interesting preferential redeposition of LiF is observed at the Si@SiO_(x) particles,which differentiates the otherwise similar lithiation potentials of LiC_(x) and Li_(15)Si_(4),thereby enabling lithium storage in graphite that was previously underused.The resulting full cell exhibits better rate and cycling performances without sacrificing specific capacity.In an ultra-high area capacity full cell(4.9 mA h cm^(-2)),the capacity retention increases markedly from 66.1% to 94.2% after 300 cycles.The selective lithiation strategy developed herein is feasible for practical industrial applications,and importantly,it requires no changes to the existing mature lithium-ion battery manufacturing process.This study offers a new approach for the development of silicon/graphite composite anodes with long cycling lifetimes.
基金This study was financially supported by the high-tech project of MOST (Grant No. 2014AA032802) and the national sci-tech support plan of the National Natural Science Foundation of China (NSFC Grant Nos. 51272273 and 51272271).
文摘The three-dimensional porous network polytetrafluoroethylene (PTFE) thin films were achieved by a vacuum technique through evaporating the pure PTFE powders. The surfaces of PTFE thin films showed various morphologies by adjusting the evaporation temperature and the corresponding contact angle ranging from 133° to 155°. Further analyses of surface chemical composition and morphology by FTIR and FE-SEM revealed that the origin of hydrophobicity for the PTFE thin films could be ascribed to the fluorine-containing groups and the surface morphologies, indicating that abundant -CF2 groups and network structures with appropriate pore sizes played a vital role in superhydrophobicity. By characterization of UV-Vis, the films also showed high transmittance and antireflection effect. The films prepared by this simple method have potential applications such as waterproof membrane and self-cleaning coating.