In order to solve the failure of electricity anti-stealing detection device triggered by the noise mixed in high-frequency electricity stealing signals,a denoising method based on variational mode decomposition(VMD)an...In order to solve the failure of electricity anti-stealing detection device triggered by the noise mixed in high-frequency electricity stealing signals,a denoising method based on variational mode decomposition(VMD)and wavelet threshold denoising(WTD)was applied to extract the effective high-frequency electricity stealing signals.First,the signal polluted by noise was pre-decomposed using the VMD algorithm,the instantaneous frequency means of each pre-decomposed components was analyzed,so as to determine the optimal K value.The optimal K value was used to decompose the polluted signal into K intrinsic mode components,and the sensitive mode components were determined through the cross-correlation function.Next,each sensitive mode was reconstructed.Finally,the reconstructed signal denoised using the wavelet threshold to obtain the denoised signal.The simulation analysis and experimental results show that the proposed method is superior to the traditional VMD method,FFT method and EMD method,as it can effectively eliminate the noise and enhance the reliability of high-frequency electricity stealing signal detection.展开更多
This work tries to improve the magnetic properties by multi-element doping in the form of a ternary alloy.SmCo_(5+)χwt%Al-Cu-Fe(x=0-7)ribbons melt-spun at 40 m/s were produced by adding Al_(82.8)Cu_(17)Fe_(0.2)alloy ...This work tries to improve the magnetic properties by multi-element doping in the form of a ternary alloy.SmCo_(5+)χwt%Al-Cu-Fe(x=0-7)ribbons melt-spun at 40 m/s were produced by adding Al_(82.8)Cu_(17)Fe_(0.2)alloy into SmCo_(5) matrix,and their phases,microstructure,and magnetic properties were investigated.The results show that both x=0 and 3 ribbons form a cellular microstructure.Al-Cu-Fe addition reduces the content of the Sm_(2)(Co,M)_(7) cell wall,narrows its width,and forms the local disordered micro-regions and solute-segregation nanoclusters in the Sm(Co,M)_(5) grains.With x increasing to5,Al-Cu-Fe addition promotes the phase separation between and within grains of the SmCo_(5)-based alloy.The Al-Cu-Fe addition can simultaneously improve the coercivity and magnetization of the SmCo_(5)-based ribbons,in particular,the magnetization of the x=3 ribbons increases by 35%,while the coercivity of the x=5 ribbons increases by 3.9 times.Finally,the microstructure evolution models are built up,and the relationship between the microstructure and the magnetic properties is discussed.展开更多
基金supported by China Southern Power Grid Corporation,GrantNo.GDKJXM20185800the National Natural Science Foundation of China,Grant No.62073084.
文摘In order to solve the failure of electricity anti-stealing detection device triggered by the noise mixed in high-frequency electricity stealing signals,a denoising method based on variational mode decomposition(VMD)and wavelet threshold denoising(WTD)was applied to extract the effective high-frequency electricity stealing signals.First,the signal polluted by noise was pre-decomposed using the VMD algorithm,the instantaneous frequency means of each pre-decomposed components was analyzed,so as to determine the optimal K value.The optimal K value was used to decompose the polluted signal into K intrinsic mode components,and the sensitive mode components were determined through the cross-correlation function.Next,each sensitive mode was reconstructed.Finally,the reconstructed signal denoised using the wavelet threshold to obtain the denoised signal.The simulation analysis and experimental results show that the proposed method is superior to the traditional VMD method,FFT method and EMD method,as it can effectively eliminate the noise and enhance the reliability of high-frequency electricity stealing signal detection.
基金Project supported by the National Natural Science Foundation of China(51671078)the Natural Science Foundation of Hebei Province,China(E2019202035)。
文摘This work tries to improve the magnetic properties by multi-element doping in the form of a ternary alloy.SmCo_(5+)χwt%Al-Cu-Fe(x=0-7)ribbons melt-spun at 40 m/s were produced by adding Al_(82.8)Cu_(17)Fe_(0.2)alloy into SmCo_(5) matrix,and their phases,microstructure,and magnetic properties were investigated.The results show that both x=0 and 3 ribbons form a cellular microstructure.Al-Cu-Fe addition reduces the content of the Sm_(2)(Co,M)_(7) cell wall,narrows its width,and forms the local disordered micro-regions and solute-segregation nanoclusters in the Sm(Co,M)_(5) grains.With x increasing to5,Al-Cu-Fe addition promotes the phase separation between and within grains of the SmCo_(5)-based alloy.The Al-Cu-Fe addition can simultaneously improve the coercivity and magnetization of the SmCo_(5)-based ribbons,in particular,the magnetization of the x=3 ribbons increases by 35%,while the coercivity of the x=5 ribbons increases by 3.9 times.Finally,the microstructure evolution models are built up,and the relationship between the microstructure and the magnetic properties is discussed.