期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Light-triggered interfacial charge transfer and enhanced photodetection in CdSe/ZnS quantum dots/MoS_(2)mixed-dimensional phototransistors 被引量:4
1
作者 Ziwei Li Wen Yang +13 位作者 Ming Huang Xin Yang Chenguang Zhu Chenglin He Lihui Li Yajuan Wang yunfei xie Zhuoran Luo Delang Liang Jianhua Huang Xiaoli Zhu Xiujuan Zhuang Dong Li Anlian Pan 《Opto-Electronic Advances》 SCIE 2021年第9期28-38,共11页
Mix-dimensional van der Waals heterostructures(vdWHs)have inspired worldwide interests and efforts in the field of ad-vanced electronics and optoelectronics.The fundamental understanding of interfacial charge transfer... Mix-dimensional van der Waals heterostructures(vdWHs)have inspired worldwide interests and efforts in the field of ad-vanced electronics and optoelectronics.The fundamental understanding of interfacial charge transfer is of vital import-ance for guiding the design of functional optoelectronic applications.In this work,type-Ⅱ0D-2D CdSe/ZnS quantum dots/MoS_(2)vdWHs are designed to study the light-triggered interfacial charge behaviors and enhanced optoelectronic performances.From spectral measurements in both steady and transient states,the phenomena of suppressed photolu-minescence(PL)emissions,shifted Raman signals and changed PL lifetimes provide strong evidences of efficient charge transfer at the 0D-2D interface.A series of spectral evolutions of heterostructures with various QDs overlapping concentrations at different laser powers are analyzed in details,which clarifies the dynamic competition between exciton and trion during an efficient doping of 3.9×10^(13)cm^(−2).The enhanced photoresponses(1.57×10^(4)A·W^(-1))and detectivities(2.86×10^(11)Jones)in 0D/2D phototransistors further demonstrate that the light-induced charge transfer is still a feasible way to optimize the performance of optoelectronic devices.These results are expected to inspire the basic understand-ing of interfacial physics at 0D/2D interfaces,and shed the light on promoting the development of mixed-dimensional op-toelectronic devices in the near future. 展开更多
关键词 heterostructure PHOTOTRANSISTOR MoS_(2) quantum dots
下载PDF
Interface Reversible Electric Field Regulated by Amphoteric Charged Protein-Based Coating Toward High-Rate and Robust Zn Anode 被引量:2
2
作者 Meihua Zhu Qing Ran +7 位作者 Houhou Huang yunfei xie Mengxiao Zhong Geyu Lu Fu-Quan Bai Xing-You Lang Xiaoteng Jia Danming Chao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期535-548,共14页
Metallic interface engineering is a promising strategy to stabilize Zn anode via promoting Zn^(2+) uniform deposition.However,strong interactions between the coating and Zn^(2+) and sluggish transport of Zn^(2+) lead ... Metallic interface engineering is a promising strategy to stabilize Zn anode via promoting Zn^(2+) uniform deposition.However,strong interactions between the coating and Zn^(2+) and sluggish transport of Zn^(2+) lead to high anodic polarization.Here,we present a bio-inspired silk fibroin(SF)coating with amphoteric charges to construct an interface reversible electric field,which manipulates the transfer kinetics of Zn^(2+) and reduces anodic polarization.The alternating positively and negatively charged surface as a build-in driving force can expedite and homogenize Zn^(2+) flux via the inter-play between the charged coating and adsorbed ions,endowing the Zn-SF anode with low polarization voltage and stable plating/stripping.Experimental analyses with theo-retical calculations suggest that SF can facilitate the desolvation of[Zn(H_(2)O)_(6)]^(2+) and provide nucleation sites for uniform deposition.Consequently,the Zn-SF anode delivers a high-rate performance with low voltage polarization(83 mV at 20 mA cm^(−2)) and excellent stability(1500 h at 1 mA cm^(−2);500 h at 10 mA cm^(−2)),realizing exceptional cumulative capacity of 2.5 Ah cm^(−2).The full cell coupled with Zn_(x)V_(2)O_(5)·nH_(2)O(ZnVO)cathode achieves specific energy of~270.5/150.6 Wh kg^(−1)(at 0.5/10 A g^(−1))with-99.8% Coulombic efficiency and retains~80.3%(at 5.0 A g^(−1))after 3000 cycles. 展开更多
关键词 Silk fibroin coating Zn anode Amphoteric charge Interfacial engineering Aqueous zinc-ion batteries
下载PDF
Trans-cinnamaldehyde inhibits Penicillium italicum by damaging mitochondria and inducing apoptosis mechanisms 被引量:2
3
作者 Fangwei Yang Jiaqi Mi +5 位作者 Fei Huang Prompong Pienpinijtham Yahui Guo Yuliang Cheng Weirong Yao yunfei xie 《Food Science and Human Wellness》 SCIE 2022年第4期975-981,共7页
Plant-derived essential oils have excellent antifungal effects and can be used for the preservation of fresh foods such as fruits and vegetables, but the detailed mechanism has not been fully elucidated. In this study... Plant-derived essential oils have excellent antifungal effects and can be used for the preservation of fresh foods such as fruits and vegetables, but the detailed mechanism has not been fully elucidated. In this study, we investigated the inhibitory effects of trans-cinnamaldehyde on Penicillium italicum, a common pollution fungus in citrus, and explored the antifungal mechanism of trans-cinnamaldehyde by detecting fungal oxidative damage, mitochondrial metabolism, and cell apoptosis. These results showed that transcinnamaldehyde made the carboxylic acid cycle deregulated by altering the related enzyme activities(succinate dehydrogenase, malate dehydrogenase) and mid product. Moreover, the level of reactive oxygen species rose sharply while the redox level was out of regulation. The mitochondrial membrane potential collapsed, leading to the leakage of cytochrome c, and then triggering the activation of apoptotic protease, which was further confirmed by the significant increase in caspase-3 activity from(3.6 ± 0.6) U to(8.8 ± 1.1) U(P < 0.05). The cytochrome c in mitochondria was detected by confocal Raman microspectroscopy, the characteristic intensity index(I750/I2944) was decreased, indicating that the cytochrome c in mitochondria was reduced and leakage. Besides, the strong negative correlation between Raman intensity and the amount of cytochrome c leakage was established with the correlation coefficient of-0.981 7. This study revealed that destroying the integrity of the mitochondrial membrane, activating the mitochondrial-mediated apoptosis pathway was the in-depth antifungal mechanism of trans-cinnamaldehyde;and Raman spectroscopy technology provided new ideas to study this process with high sensitivity determination of cytochrome c. 展开更多
关键词 trans-cinnamaldehyde Penicillium italicum Raman microspectroscopy Inhibition mechanism Cytochrome c APOPTOSIS
下载PDF
The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
4
作者 陈姝瑶 谢云飞 +11 位作者 杨玉聪 高栋 刘冬华 秦林 严巍 谭碧 陈秋丽 龚涛 李恩 毕磊 刘涛 邓龙江 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期67-72,共6页
Yttrium iron garnet(YIG) films possessing both perpendicular magnetic anisotropy(PMA) and low damping would serve as ideal candidates for high-speed energy-efficient spintronic and magnonic devices.However,it is still... Yttrium iron garnet(YIG) films possessing both perpendicular magnetic anisotropy(PMA) and low damping would serve as ideal candidates for high-speed energy-efficient spintronic and magnonic devices.However,it is still challenging to achieve PMA in YIG films thicker than 20 nm,which is a major bottleneck for their development.In this work,we demonstrate that this problem can be solved by using substrates with moderate lattice mismatch with YIG so as to suppress the excessive strain-induced stress release as increasing the YIG thickness.After carefully optimizing the growth and annealing conditions,we have achieved out-of-plane spontaneous magnetization in YIG films grown on sGGG substrates,even when they are as thick as 50 nm.Furthermore,ferromagnetic resonance and spin pumping induced inverse spin Hall effect measurements further verify the good spin transparency at the surface of our YIG films. 展开更多
关键词 SPINTRONICS perpendicular magnetic anisotropy magnetic thin film deposition by sputtering
下载PDF
An extended analysis of cardiovascular benefits of indoor air filtration intervention among elderly:a randomized crossover trial(Beijing indoor air purifier study,BIAPSY)
5
作者 Jie Chen Tong Wang +16 位作者 Hongbing Xu Yutong Zhu Yipeng Du Beibei Liu Qian Zhao Yi Zhang Lingyan Liu Ningman Yuan Jiakun Fang yunfei xie Shuo Liu Rongshan Wu Danqing Shao Xiaoming Song Bei He Bert Brunekreef Wei Huang 《Global Health Journal》 2022年第1期30-34,共5页
Objective Evidence on potential cardiovascular benefits of personal-level intervention among the elderly exposed to high levels of particulate matter(PM)remains limited.We aimed to assess improvements in surrogate mar... Objective Evidence on potential cardiovascular benefits of personal-level intervention among the elderly exposed to high levels of particulate matter(PM)remains limited.We aimed to assess improvements in surrogate markers of cardiovascular injury in vulnerable populations at risks by using indoor air filtration units.Methods We conducted a randomized crossover trial for 2 separate 2-week air filtration interventions in 20 households of patients with stable chronic obstructive pulmonary disease and their partners in the winter of 2013,with concurrent measurements of indoor PM.The changes in biomarkers indicative of cardiac injury,atherosclerosis progression and systemic inflammation following intervention were evaluated using linear mixed-effect models.Results In the analysis,average levels of indoor PM with aerodynamic diameters<2.5µm(PM2.5)decreased significantly by 59.2%(from 59.6 to 24.3µg/m3,P<0.001)during the active air filtration.The reduction was accompanied by improvements in levels of high-sensitivity cardiac troponin I by−84.6%(95%confidence interval[CI]:−90.7 to−78.6),growth differentiation factor-15 by−48.1%(95%CI:−31.2 to−25.6),osteoprotegerin by−65.4%(95%CI:−56.5 to−18.7),interleukin-4 by−46.6%(95%CI:−62.3 to−31.0)and myeloperoxidase by−60.3%(95%CI:−83.7 to−3.0),respectively.Conclusion Indoor air filtration intervention may provide potential cardiovascular benefits in vulnerable populations at risks. 展开更多
关键词 Air filtration Indoor air pollution Particulate matter Cardiovascular benefit ELDERLY
下载PDF
Self-assembled monolayers as emerging hole-selective layers enable high-performance thin-film solar cells
6
作者 Mingliang Li yunfei xie +3 位作者 Francis R.Lin Ziwei Li Shuang Yang Alex K.-Y.Jen 《The Innovation》 2023年第1期26-27,共2页
Since human society has been rapidly industrializing over the past century,excessive energy consumption and environmental damage have raised awareness of the need for clean,renewable energy sources.Especially after th... Since human society has been rapidly industrializing over the past century,excessive energy consumption and environmental damage have raised awareness of the need for clean,renewable energy sources.Especially after the outbreak of the Russian-Ukrainian war,the development of alternative energy issue has been elevated to an unprecedented strategic level.Solar energy,as one of the clean and renewable energies,is experiencing a historical stage of changing its role from supplementary energy to alternative energy.The exploration of photovoltaic(PV)cells with newmaterials and structures is urgent tomeet the demand of achieving carbon-peak and carbon-neutralization goals. 展开更多
关键词 ELEVATED enable raised
原文传递
Plasmonically engineered light-matter interactions in Aunanoparticle/MoS_(2) heterostructures for artificial optoelectronic synapse 被引量:4
7
作者 Zhuoran Luo yunfei xie +11 位作者 Ziwei Li Yajuan Wang Lihui Li Ziyu Luo Chenguang Zhu Xin Yang Ming Huang Jianhua Huang Delang Liang Xiaoli Zhu Dong Li Anlian Pan 《Nano Research》 SCIE EI CSCD 2022年第4期3539-3547,共9页
Optoelectronic synaptic elements are emerging functional devices for the vigorous development of advanced neuromorphic computing technology in the post-Moore era.However,optoelectronic devices based on transition meta... Optoelectronic synaptic elements are emerging functional devices for the vigorous development of advanced neuromorphic computing technology in the post-Moore era.However,optoelectronic devices based on transition metal dichalcogenides(TMDs)are limited to their poor mobilities and weak light-matter interactions,which still hardly exhibit superior device performances in the application of artificial synapses.Here,we demonstrate the successful fabrication of Au nanoparticle-coupled MoS_(2)heterostructures via chemical vapor deposition(CVD),where the light absorption of MoS_(2)is greatly enhanced and engineered by plasmonic effects.Hot electrons are excited from Au nanoparticles,and then injected into MoS_(2)semiconductors under the light illumination.The plasmonically-engineered photo-gating effect at the metal-semiconductor junction is demonstrated to create optoelectronic devices with excellent synaptic behaviors,especially in ultra-sensitive excitatory postsynaptic current(EPSC,9.6×10^(-3)nA@3.4 nW·cm^(-2)),ultralow energy consumption(34.7 pJ),long-state retention time(>1,000 s),and tunable synaptic plasticity transitions.The material system of Au-nanoparticles coupled TMDs presents unique advantages for building artificial synapses,which may lead the future development of neuromorphic electronics in optical information sensing and learning. 展开更多
关键词 SYNAPSE optoelectronic device surface plasmon photo-gating MoS_(2)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部