Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulatio...Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulations were performed on double-grits interacted grinding of GaN crystals;and the grinding force,coefficient of friction,stress distribution,plastic damage behaviors,and abrasive damage were systematically investigated.The results demonstrated that the interacted distance in both radial and transverse directions achieved better grinding quality than that in only one direction.The grinding force,grinding induced stress,subsurface damage depth,and abrasive wear increase as the transverse interacted distance increases.However,there was no clear correlation between the interaction distance and the number of atoms in the phase transition and dislocation length.Appropriate interacted distances between abrasives can decrease grinding force,coefficient of friction,grinding induced stress,subsurface damage depth,and abrasive wear during the grinding process.The results of grinding tests combined with cross-sectional transmission electron micrographs validated the simulated damage results,i.e.amorphous atoms,high-pressure phase transition,dislocations,stacking faults,and lattice distortions.The results of this study will deepen our understanding of damage accumulation and material removal resulting from coupling between abrasives during grinding and can be used to develop a feasible approach to the wheel design of ordered abrasives.展开更多
Mobile Edge Computing(MEC)is a technology for the fifth-generation(5G)wireless communications to enable User Equipment(UE)to offload tasks to servers deployed at the edge of network.However,taking both delay and energ...Mobile Edge Computing(MEC)is a technology for the fifth-generation(5G)wireless communications to enable User Equipment(UE)to offload tasks to servers deployed at the edge of network.However,taking both delay and energy consumption into consideration in the 5G MEC system is usually complex and contradictory.Non-orthogonal multiple access(NOMA)enable more UEs to offload their computing tasks to MEC servers using the same spectrum resources to enhance the spectrum efficiency for 5G,which makes the problem even more complex in the NOMA-MEC system.In this work,a system utility maximization model is present to NOMA-MEC system,and two optimization algorithms based on Newton method and greedy algorithm respectively are proposed to jointly optimize the computing resource allocation,SIC order,transmission time slot allocation,which can easily achieve a better trade-off between the delay and energy consumption.The simulation results prove that the proposed method is effective for NOMA-MEC systems.展开更多
Aiming for ultra-reliable low-latency wireless communications required in industrial internet of things(IIoT)applications,this paper studies a simple cognitive radio non-orthogonal multiple access(CR-NOMA)downlink sys...Aiming for ultra-reliable low-latency wireless communications required in industrial internet of things(IIoT)applications,this paper studies a simple cognitive radio non-orthogonal multiple access(CR-NOMA)downlink system.This system consists of two secondary users(SUs)dynamically interfered by the primary user(PU),and its performance is characterized by the outage probability of the SU communications.This outage probability is calculated under two conditions where,a)the transmission of PU starts after the channel state information(CSI)is acquired,so the base station(BS)is oblivious of the interference,and b)when the BS is aware of the PU interference,and the NOMA transmission is adapted to the more comprehensive knowledge of the signal to interference plus noise ratio(SINR).These results are verified by simulations,and their good agreement suggests our calculations can be used to reduce the complexity of future analysis.We find the outage probability is reduced when the SUs move further away from the primary transmitter or when the signal from PU is less powerful,and the BS always has better performance when it is aware of the interference.The findings thus emphasize the importance of monitoring the channel quality and realtime feedback to optimize the performance of CR-NOMA system.展开更多
This paper proposes a hybrid spectrum accessing mechanism by using NOMA-based cooperative transmission and beam-forming technology.In this mechanism,the secondary user employs spectrum-sensing technology to detect the...This paper proposes a hybrid spectrum accessing mechanism by using NOMA-based cooperative transmission and beam-forming technology.In this mechanism,the secondary user employs spectrum-sensing technology to detect the existence of the primary user.If the primary user does not exist,the secondary source user directly transmits data to the destination user.If the primary user exists,the secondary source user finds the optimal relay according to certain selection principle before transmitting data to the destination user through the chosen relay node.For the signal receiving stage,the secondary user takes use of beam-forming technology to receive the signal from both the secondary source and the secondary relay node.Meanwhile the interference from the primary user is cancelled out in the stage.Furthermore,the outage probability for secondary user in the proposed mechanism is theoretically derived.Finally,the simulation results show that compared with the traditional mechanism,the proposed system model can not only guarantee the continuity of secondary transmission,but also significantly reduce the outage probability of secondary transmission.展开更多
The combination of Radio Frequency and Optical Fiber has resulted high capacity transmission at lower costs components and makes Radio over Fiber as a current trend of large broadband communication. In Fiber optics fi...The combination of Radio Frequency and Optical Fiber has resulted high capacity transmission at lower costs components and makes Radio over Fiber as a current trend of large broadband communication. In Fiber optics field, the use of Fiber Bragg Grating (FBG) was been proposed in recent research with different purpose of uses. However, the compensation of dispersion method of Fiber Bragg Grating (FBG) can boost significantly the system performance. This paper investigates the performance capacity improvement of adaptive Radio over Fiber system. The system design was performed using OptiSystem 7.0 software, which 10 Gb/s Non Return to Zero (NRZ) signal was launched into 50 Km Universal Mode Fiber and Fiber Bragg Grating was used as a compensator of dispersion before frequency up conversion. Therefore, the system performances were investigated by comparing the Bit Error Rate (BER) and Q-factors of Positive Intrinsic Negative (PIN) and Ultrafast Avalanche Photodiode (APD) as optical receivers. The Eye diagram analyzer showed acceptable improvement due to use of Fiber Bragg Grating as a compensator of dispersion.展开更多
准确评估草地生态系统固碳速率、提升其碳汇能力对于深入认识国家尺度陆地生态系统碳源汇特征及其固碳潜力具有重要意义。通过梳理文献,本文总结了我国草地碳汇大小、空间格局及其未来趋势,并提出了提升草地碳汇的可能途径。结果发现,...准确评估草地生态系统固碳速率、提升其碳汇能力对于深入认识国家尺度陆地生态系统碳源汇特征及其固碳潜力具有重要意义。通过梳理文献,本文总结了我国草地碳汇大小、空间格局及其未来趋势,并提出了提升草地碳汇的可能途径。结果发现,不同研究对我国草地碳源汇特征的估算差异较大,大小介于-3.4~17.6 Tg C year^(-1)(1 Tg=10^(12)g),中值为13.0 Tg C year^(-1)。模型预测未来全球变化背景下我国草地碳汇呈增加趋势,由1970s—2010s的12.8 Tg C year^(-1)(不同研究结果的范围:-3.6~18.0 Tg C year^(-1))增加至2050s的29.0 Tg C year^(-1)(10.3~50.0 Tg C year^(-1))。通过构建退化草地恢复技术体系、加强重大生态工程、自然保护区和人工草地建设、利用碳汇植物提升荒漠化草地碳汇、以及实施有效的生态奖补政策等手段,有望进一步提升草地固碳能力。未来亟需在草地碳通量长期联网观测、碳循环关键过程对全球变化响应和反馈机制、数据—模型融合等方面加强研究,以降低草地碳汇估算中的不确定性。此外,还需加强草地退化和恢复过程中碳循环观测和模拟研究,从而针对性地恢复退化草地碳汇功能,为我国实现“碳中和”国家战略目标提供科技支撑。展开更多
Enhancing the terrestrial ecosystem carbon sink(referred to as terrestrial C sink) is an important way to slow down the continuous increase in atmospheric carbon dioxide(CO_(2)) concentration and to achieve carbon neu...Enhancing the terrestrial ecosystem carbon sink(referred to as terrestrial C sink) is an important way to slow down the continuous increase in atmospheric carbon dioxide(CO_(2)) concentration and to achieve carbon neutrality target.To better understand the characteristics of terrestrial C sinks and their contribution to carbon neutrality,this review summarizes major progress in terrestrial C budget researches during the past decades,clarifies spatial patterns and drivers of terrestrial C sources and sinks in China and around the world,and examines the role of terrestrial C sinks in achieving carbon neutrality target.According to recent studies,the global terrestrial C sink has been increasing from a source of (-0.2±0.9) Pg C yr^(-1)(1 Pg=1015g)in the 1960s to a sink of (1.9±1.1) Pg C yr^(-1) in the 2010s.By synthesizing the published data,we estimate terrestrial C sink of 0.20–0.25 Pg C yr^(-1) in China during the past decades,and predict it to be 0.15–0.52 Pg C yr^(-1) by 2060.The terrestrial C sinks are mainly located in the mid-and high latitudes of the Northern Hemisphere,while tropical regions act as a weak C sink or source.The C balance differs much among ecosystem types:forest is the major C sink;shrubland,wetland and farmland soil act as C sinks;and whether the grassland functions as C sink or source remains unclear.Desert might be a C sink,but the magnitude and the associated mechanisms are still controversial.Elevated atmospheric CO_(2) concentration,nitrogen deposition,climate change,and land cover change are the main drivers of terrestrial C sinks,while other factors such as fires and aerosols would also affect ecosystem C balance.The driving factors of terrestrial C sink differ among regions.Elevated CO_(2) concentration and climate change are major drivers of the C sinks in North America and Europe,while afforestation and ecological restoration are additionally important forcing factors of terrestrial C sinks in China.For future studies,we recommend the necessity for intensive and long-term ecosystem C monitoring over broad geographic scale to improve terrestrial biosphere models for accurately evaluating terrestrial C budget and its dynamics under various climate change and policy scenarios.展开更多
Cement-stabilized soil bases have been widely used in expressways due to its high strength,appropriate stiffness,good water resistance,and frost resistance.So far,the structural characteristics and mechanical behavior...Cement-stabilized soil bases have been widely used in expressways due to its high strength,appropriate stiffness,good water resistance,and frost resistance.So far,the structural characteristics and mechanical behaviors of cement-stabilized soil bases were not investigated so much.In this paper,the 3D elastic-plastic finite element method(FEM)was used to analyze the mechanical behaviors and structural characteristics of cementstabilized soil bases from construction to operation.The pavement filling and the traffic loading processes were simulated,and a contact model was used to simulate the contact behavior between each layer of the pavement.Considering the construction process,the structural characteristics and mechanical behaviors of cementstabilized soil bases were studied under asphalt-concrete pavement conditions.Furthermore,the general rules of deformations and stresses in cement-stabilized soil bases under different conditions were discussed,and some suggestions were put forward for the design and construction of cement-stabilized soil bases.展开更多
基金supported by the National Natural Science Foundation of China(52375420,52005134 and51675453)Natural Science Foundation of Heilongjiang Province of China(YQ2023E014)+5 种基金Self-Planned Task(No.SKLRS202214B)of State Key Laboratory of Robotics and System(HIT)China Postdoctoral Science Foundation(2022T150163)Young Elite Scientists Sponsorship Program by CAST(No.YESS20220463)State Key Laboratory of Robotics and System(HIT)(SKLRS-2022-ZM-14)Open Fund of Key Laboratory of Microsystems and Microstructures Manufacturing(HIT)(2022KM004)Fundamental Research Funds for the Central Universities(Grant Nos.HIT.OCEF.2022024 and FRFCU5710051122)。
文摘Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulations were performed on double-grits interacted grinding of GaN crystals;and the grinding force,coefficient of friction,stress distribution,plastic damage behaviors,and abrasive damage were systematically investigated.The results demonstrated that the interacted distance in both radial and transverse directions achieved better grinding quality than that in only one direction.The grinding force,grinding induced stress,subsurface damage depth,and abrasive wear increase as the transverse interacted distance increases.However,there was no clear correlation between the interaction distance and the number of atoms in the phase transition and dislocation length.Appropriate interacted distances between abrasives can decrease grinding force,coefficient of friction,grinding induced stress,subsurface damage depth,and abrasive wear during the grinding process.The results of grinding tests combined with cross-sectional transmission electron micrographs validated the simulated damage results,i.e.amorphous atoms,high-pressure phase transition,dislocations,stacking faults,and lattice distortions.The results of this study will deepen our understanding of damage accumulation and material removal resulting from coupling between abrasives during grinding and can be used to develop a feasible approach to the wheel design of ordered abrasives.
文摘Mobile Edge Computing(MEC)is a technology for the fifth-generation(5G)wireless communications to enable User Equipment(UE)to offload tasks to servers deployed at the edge of network.However,taking both delay and energy consumption into consideration in the 5G MEC system is usually complex and contradictory.Non-orthogonal multiple access(NOMA)enable more UEs to offload their computing tasks to MEC servers using the same spectrum resources to enhance the spectrum efficiency for 5G,which makes the problem even more complex in the NOMA-MEC system.In this work,a system utility maximization model is present to NOMA-MEC system,and two optimization algorithms based on Newton method and greedy algorithm respectively are proposed to jointly optimize the computing resource allocation,SIC order,transmission time slot allocation,which can easily achieve a better trade-off between the delay and energy consumption.The simulation results prove that the proposed method is effective for NOMA-MEC systems.
基金This work is funded by National Major Project(No.2017ZX03001021-005)National Key R&D Program of China(No.2017YFB1001600)+1 种基金Standard Development and Test bed Construction for Smart Factory Virtual Mapping Model and Digitized Delivery(No.MIIT 2019-00899-3-1)2018 Sugon Intelligent Factory on Advanced Computing Devices(No.MIIT 2018-265-137).
文摘Aiming for ultra-reliable low-latency wireless communications required in industrial internet of things(IIoT)applications,this paper studies a simple cognitive radio non-orthogonal multiple access(CR-NOMA)downlink system.This system consists of two secondary users(SUs)dynamically interfered by the primary user(PU),and its performance is characterized by the outage probability of the SU communications.This outage probability is calculated under two conditions where,a)the transmission of PU starts after the channel state information(CSI)is acquired,so the base station(BS)is oblivious of the interference,and b)when the BS is aware of the PU interference,and the NOMA transmission is adapted to the more comprehensive knowledge of the signal to interference plus noise ratio(SINR).These results are verified by simulations,and their good agreement suggests our calculations can be used to reduce the complexity of future analysis.We find the outage probability is reduced when the SUs move further away from the primary transmitter or when the signal from PU is less powerful,and the BS always has better performance when it is aware of the interference.The findings thus emphasize the importance of monitoring the channel quality and realtime feedback to optimize the performance of CR-NOMA system.
基金This work is supported by National Major Project(No.2017ZX03001021-005)National Key R&D Program of China(Grant No.2017YFB1001600)2018 Sugon Intelligent-Factory on Advanced Computing Devices(No.MIIT2018-265-137).
文摘This paper proposes a hybrid spectrum accessing mechanism by using NOMA-based cooperative transmission and beam-forming technology.In this mechanism,the secondary user employs spectrum-sensing technology to detect the existence of the primary user.If the primary user does not exist,the secondary source user directly transmits data to the destination user.If the primary user exists,the secondary source user finds the optimal relay according to certain selection principle before transmitting data to the destination user through the chosen relay node.For the signal receiving stage,the secondary user takes use of beam-forming technology to receive the signal from both the secondary source and the secondary relay node.Meanwhile the interference from the primary user is cancelled out in the stage.Furthermore,the outage probability for secondary user in the proposed mechanism is theoretically derived.Finally,the simulation results show that compared with the traditional mechanism,the proposed system model can not only guarantee the continuity of secondary transmission,but also significantly reduce the outage probability of secondary transmission.
文摘The combination of Radio Frequency and Optical Fiber has resulted high capacity transmission at lower costs components and makes Radio over Fiber as a current trend of large broadband communication. In Fiber optics field, the use of Fiber Bragg Grating (FBG) was been proposed in recent research with different purpose of uses. However, the compensation of dispersion method of Fiber Bragg Grating (FBG) can boost significantly the system performance. This paper investigates the performance capacity improvement of adaptive Radio over Fiber system. The system design was performed using OptiSystem 7.0 software, which 10 Gb/s Non Return to Zero (NRZ) signal was launched into 50 Km Universal Mode Fiber and Fiber Bragg Grating was used as a compensator of dispersion before frequency up conversion. Therefore, the system performances were investigated by comparing the Bit Error Rate (BER) and Q-factors of Positive Intrinsic Negative (PIN) and Ultrafast Avalanche Photodiode (APD) as optical receivers. The Eye diagram analyzer showed acceptable improvement due to use of Fiber Bragg Grating as a compensator of dispersion.
文摘准确评估草地生态系统固碳速率、提升其碳汇能力对于深入认识国家尺度陆地生态系统碳源汇特征及其固碳潜力具有重要意义。通过梳理文献,本文总结了我国草地碳汇大小、空间格局及其未来趋势,并提出了提升草地碳汇的可能途径。结果发现,不同研究对我国草地碳源汇特征的估算差异较大,大小介于-3.4~17.6 Tg C year^(-1)(1 Tg=10^(12)g),中值为13.0 Tg C year^(-1)。模型预测未来全球变化背景下我国草地碳汇呈增加趋势,由1970s—2010s的12.8 Tg C year^(-1)(不同研究结果的范围:-3.6~18.0 Tg C year^(-1))增加至2050s的29.0 Tg C year^(-1)(10.3~50.0 Tg C year^(-1))。通过构建退化草地恢复技术体系、加强重大生态工程、自然保护区和人工草地建设、利用碳汇植物提升荒漠化草地碳汇、以及实施有效的生态奖补政策等手段,有望进一步提升草地固碳能力。未来亟需在草地碳通量长期联网观测、碳循环关键过程对全球变化响应和反馈机制、数据—模型融合等方面加强研究,以降低草地碳汇估算中的不确定性。此外,还需加强草地退化和恢复过程中碳循环观测和模拟研究,从而针对性地恢复退化草地碳汇功能,为我国实现“碳中和”国家战略目标提供科技支撑。
基金supported by the National Natural Science Foundation of China (31988102)。
文摘Enhancing the terrestrial ecosystem carbon sink(referred to as terrestrial C sink) is an important way to slow down the continuous increase in atmospheric carbon dioxide(CO_(2)) concentration and to achieve carbon neutrality target.To better understand the characteristics of terrestrial C sinks and their contribution to carbon neutrality,this review summarizes major progress in terrestrial C budget researches during the past decades,clarifies spatial patterns and drivers of terrestrial C sources and sinks in China and around the world,and examines the role of terrestrial C sinks in achieving carbon neutrality target.According to recent studies,the global terrestrial C sink has been increasing from a source of (-0.2±0.9) Pg C yr^(-1)(1 Pg=1015g)in the 1960s to a sink of (1.9±1.1) Pg C yr^(-1) in the 2010s.By synthesizing the published data,we estimate terrestrial C sink of 0.20–0.25 Pg C yr^(-1) in China during the past decades,and predict it to be 0.15–0.52 Pg C yr^(-1) by 2060.The terrestrial C sinks are mainly located in the mid-and high latitudes of the Northern Hemisphere,while tropical regions act as a weak C sink or source.The C balance differs much among ecosystem types:forest is the major C sink;shrubland,wetland and farmland soil act as C sinks;and whether the grassland functions as C sink or source remains unclear.Desert might be a C sink,but the magnitude and the associated mechanisms are still controversial.Elevated atmospheric CO_(2) concentration,nitrogen deposition,climate change,and land cover change are the main drivers of terrestrial C sinks,while other factors such as fires and aerosols would also affect ecosystem C balance.The driving factors of terrestrial C sink differ among regions.Elevated CO_(2) concentration and climate change are major drivers of the C sinks in North America and Europe,while afforestation and ecological restoration are additionally important forcing factors of terrestrial C sinks in China.For future studies,we recommend the necessity for intensive and long-term ecosystem C monitoring over broad geographic scale to improve terrestrial biosphere models for accurately evaluating terrestrial C budget and its dynamics under various climate change and policy scenarios.
文摘Cement-stabilized soil bases have been widely used in expressways due to its high strength,appropriate stiffness,good water resistance,and frost resistance.So far,the structural characteristics and mechanical behaviors of cement-stabilized soil bases were not investigated so much.In this paper,the 3D elastic-plastic finite element method(FEM)was used to analyze the mechanical behaviors and structural characteristics of cementstabilized soil bases from construction to operation.The pavement filling and the traffic loading processes were simulated,and a contact model was used to simulate the contact behavior between each layer of the pavement.Considering the construction process,the structural characteristics and mechanical behaviors of cementstabilized soil bases were studied under asphalt-concrete pavement conditions.Furthermore,the general rules of deformations and stresses in cement-stabilized soil bases under different conditions were discussed,and some suggestions were put forward for the design and construction of cement-stabilized soil bases.