期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Rotary-scaling fine-tuning (RSFT) method for optimizing railway wheel profiles and its application to a locomotive 被引量:7
1
作者 yunguang ye Yayun Qi +3 位作者 Dachuan Shi Yu Sun Yichang Zhou Markus Hecht 《Railway Engineering Science》 2020年第2期160-183,共24页
The existing multi-objective wheel profile optimization methods mainly consist of three sub-modules:(1)wheel profile generation,(2)multi-body dynamics simulation,and(3)an optimization algorithm.For the first module,a ... The existing multi-objective wheel profile optimization methods mainly consist of three sub-modules:(1)wheel profile generation,(2)multi-body dynamics simulation,and(3)an optimization algorithm.For the first module,a comparably conservative rotary-scaling finetuning(RSFT)method,which introduces two design variables and an empirical formula,is proposed to fine-tune the traditional wheel profiles for improving their engineering applicability.For the second module,for the TRAXX locomotives serving on the Blankenburg–Rubeland line,an optimization function representing the relationship between the wheel profile and the wheel–rail wear number is established based on Kriging surrogate model(KSM).For the third module,a method combining the regression capability of KSM with the iterative computing power of particle swarm optimization(PSO)is proposed to quickly and reliably implement the task of optimizing wheel profiles.Finally,with the RSFT–KSM–PSO method,we propose two wear-resistant wheel profiles for the TRAXX locomotives serving on the Blankenburg–Rubeland line,namely S1002-S and S1002-M.The S1002-S profile minimizes the total wear number by 30%,while the S1002-M profile makes the wear distribution more uniform through a proper sacrifice of the tread wear number,and the total wear number is reduced by 21%.The quasi-static and hunting stability tests further demonstrate that the profile designed by the RSFT–KSM–PSO method is promising for practical engineering applications. 展开更多
关键词 Wheel profile optimization Wear reduction Rotary-scaling fine-tuning Particle swarm optimization Kriging surrogate model
下载PDF
Railway wheel profile fine-tuning system for profile recommendation 被引量:3
2
作者 yunguang ye Jonas Vuitton +1 位作者 Yu Sun Markus Hecht 《Railway Engineering Science》 2021年第1期74-93,共20页
This paper develops a wheel profile fine-tuning system(WPFTS)that comprehensively considers the influence of wheel profile on wheel damage,vehicle stability,vehicle safety,and passenger comfort.WPFTS can recommend one... This paper develops a wheel profile fine-tuning system(WPFTS)that comprehensively considers the influence of wheel profile on wheel damage,vehicle stability,vehicle safety,and passenger comfort.WPFTS can recommend one or more optimized wheel profiles according to train operators’needs,e.g.,reducing wheel wear,mitigating the development of wheel out-of-roundness(OOR),improving the shape stability of the wheel profile.Specifically,WPFTS includes four modules:(I)a wheel profile generation module based on the rotary-scaling finetuning(RSFT)method;(II)a multi-objective generation module consisting of a rigid multi-body dynamics simulation(MBS)model,an analytical model,and a rigid–flexible MBS model,for generating 11 objectives related to wheel damage,vehicle stability,vehicle safety,and passenger comfort;(III)a weight assignment module consisting of an adaptive weight assignment strategy and a manual weight assignment strategy;and(IV)an optimization module based on radial basis function(RBF)and particle swarm optimization(PSO).Finally,three cases are introduced to show how WPTFS recommends a wheel profile according to train operators’needs.Among them,a wheel profile with high shape stability,a wheel profile for mitigating the development of wheel OOR,and a wheel profile considering hunting stability and derailment safety are developed,respectively. 展开更多
关键词 Wheel profile fine-tuning system Optimization RECOMMENDATION WEAR Contact concentration index Multi-body dynamics simulation(MBS) Railway wheel
下载PDF
Deep learning-based fault diagnostic network of high-speed train secondary suspension systems for immunity to track irregularities and wheel wear 被引量:1
3
作者 yunguang ye Ping Huang Yongxiang Zhang 《Railway Engineering Science》 2022年第1期96-116,共21页
Fault detection and isolation of high-speed train suspension systems is of critical importance to guarantee train running safety. Firstly, the existing methods concerning fault detection or isolation of train suspensi... Fault detection and isolation of high-speed train suspension systems is of critical importance to guarantee train running safety. Firstly, the existing methods concerning fault detection or isolation of train suspension systems are briefly reviewed and divided into two categories, i.e., model-based and data-driven approaches. The advantages and disadvantages of these two categories of approaches are briefly summarized. Secondly, a 1D convolution network-based fault diagnostic method for highspeed train suspension systems is designed. To improve the robustness of the method, a Gaussian white noise strategy(GWN-strategy) for immunity to track irregularities and an edge sample training strategy(EST-strategy) for immunity to wheel wear are proposed. The whole network is called GWN-EST-1 DCNN method. Thirdly, to show the performance of this method, a multibody dynamics simulation model of a high-speed train is built to generate the lateral acceleration of a bogie frame corresponding to different track irregularities, wheel profiles, and secondary suspension faults. The simulated signals are then inputted into the diagnostic network, and the results show the correctness and superiority of the GWN-EST-1DCNN method. Finally,the 1DCNN method is further validated using tracking data of a CRH3 train running on a high-speed railway line. 展开更多
关键词 High-speed train suspension system Fault diagnosis Track irregularities Wheel wear Deep learning Literature review
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部