Adjoint-based optimization method is a hotspot in turbomachinery.First,this paper presents principles of adjoint method from Lagrange multiplier viewpoint.Second,combining a continuous route with thin layer RANS equat...Adjoint-based optimization method is a hotspot in turbomachinery.First,this paper presents principles of adjoint method from Lagrange multiplier viewpoint.Second,combining a continuous route with thin layer RANS equations,we formulate adjoint equations and anti-physical boundary conditions.Due to the multi-stage environment in turbomachinery,an adjoint interrow mixing method is introduced.Numerical techniques of solving flow equations and adjoint equations are almost the same,and once they are converged respectively,the gradients of an objective function to design variables can be calculated using complex method efficiently.Third,integrating a shape perturbation parameterization and a simple steepest descent method,a frame of adjoint-based aerodynamic shape optimization for multi-stage turbomachinery is constructed.At last,an inverse design of an annular cascade is employed to validate the above approach,and adjoint field of an Aachen 1.5 stage turbine demonstrates the conservation and areflexia of the adjoint interrow mixing method.Then a direct redesign of a 1+1 counter-rotating turbine aiming to increase efficiency and apply constraints to mass flow rate and pressure ratio is taken.展开更多
Flame structures of a syngas swirl-stabilized diffusion flame in a model combustor were measured using the OH-PLIF method under different fuel and air swirl intensity.The flame operated under atmospheric pressure with...Flame structures of a syngas swirl-stabilized diffusion flame in a model combustor were measured using the OH-PLIF method under different fuel and air swirl intensity.The flame operated under atmospheric pressure with air and a typical low heating-value syngas with a composition of 28.5% CO,22.5% H2 and 49% N2 at a thermal power of 34 kW.Results indicate that increasing the air swirl intensity with the same fuel,swirl intensity flame structures showed little difference except a small reduction of flame length;but also,with the same air swirl intensity,fuel swirl intensity showed great influence on flame shape,length and reaction zone distribution.Therefore,compared with air swirl intensity,fuel swirl intensity appeared a key effect on the flame structure for the model combustor.Instantaneous OH-PLIF images showed that three distinct typical structures with an obvious difference of reaction zone distribution were found at low swirl intensity,while a much compacter flame structure with a single,stable and uniform reaction zone distribution was found at large fuel-air swirl intensity.It means that larger swirl intensity leads to efficient,stable combustion of the syngas diffusion flame.展开更多
The present work explores how much IGCC can benefit from warm gas clean-up(WGCU)in comparison with conventional cold gas clean-up(CGCU) and what are the respective contributions of dry particulates removal and war...The present work explores how much IGCC can benefit from warm gas clean-up(WGCU)in comparison with conventional cold gas clean-up(CGCU) and what are the respective contributions of dry particulates removal and warm gas desulfurization (WGD) in a plant-wide point of view. Influences of key parameters of WGD on ther- modynamic performance of IGCC plant including desulfurization temperature, oxygen concentration in the re- generation stream, and H2S removal efficiency are discussed. It is obtained that the net efficiency of IGCC with full WGCU experiences an improvement of 1.77 percentage points compared with IGCC with full CGCU. Of which, dry particulates removal without water scrubber contributes about 1 percentage point. The influence of desulfurization temperature on thermodynamic performance of IGCC with WGD is weak especially when it is higher than about 350~C, which indicates that more focus should be put on investment cost, technical feasibility and sorbent stability for the selection of optimal operation temperature. Generally, 2%-3% of oxygen concentra- tion in the regeneration stream might be reasonable in a thermodynamic performance point of view. In addition, the improvement of 0.31 percentage points can be obtained by removal of H2S in the syngas from 27 ppm to 3 ppm.展开更多
Chemical-looping combustion (CLC) is a novel combustion technique with inherent CO2 separation.Magnetite (Fe3O4) was selected as the oxygen carrier.Shenhua coal (Inner Mongolia,China),straw coke and natural coke were ...Chemical-looping combustion (CLC) is a novel combustion technique with inherent CO2 separation.Magnetite (Fe3O4) was selected as the oxygen carrier.Shenhua coal (Inner Mongolia,China),straw coke and natural coke were used as fuels for this study.Influences of operation temperatures,coal to Fe3O4 mass ratios,and different kinds of fuels on the reduction characteristics of the oxygen carrier were investigated using an atmosphere thermogravimetric analyzer (TGA).Scanning electron microscopy (SEM) was used to analyse the characteristic of the solid residues.Experimental results shown that the reaction between the coal and the oxygen carrier become strong at a temperature of higher than 800℃.As the operation temperature rises,the reduction conversion rate increases.At the temperatures of 850oС,900℃,and 950℃,the reduction conversion rates were 37.1%,46.5%,and 54.1% respectively.However,SEM images show that at the temperature of higher than 950℃,the iron oxides become melted and sintered.The possible operation temperature should be kept around 900℃.When the mass ratios of coal to Fe3O4 were 5/95,10/90,15/85,and 20/80,the reduction conversion rates were 29.5%,40.8%,46.5%,and 46.6% respectively.With the increase of coal,the conversion rate goes up.But there exist an optimal ratio around 15/85.Comparisons based on different kinds of fuels show that the solid fuel with a higher volatile and a more developed pore structure is conducive to the reduction reactivity of the oxygen carrier.展开更多
The present work investigates the influence of ambient temperature on the steady-state off-design thermodynamic performance of a chemical looping combustion(CLC) combined cycle.A sensitivity analysis of the CLC reacto...The present work investigates the influence of ambient temperature on the steady-state off-design thermodynamic performance of a chemical looping combustion(CLC) combined cycle.A sensitivity analysis of the CLC reactor system was conducted,which shows that the parameters that influence the temperatures of the CLC reactors most are the flow rate and temperature of air entering the air reactor.For the ambient temperature variation,three off-design control strategies have been assumed and compared:1) without any Inlet Guide Vane(IGV) control,2) IGV control to maintain air reactor temperature and 3) IGV control to maintain constant fuel reactor temperature,aside from fuel flow rate adjusting.Results indicate that,compared with the conventional combined cycle,due to the requirement of pressure balance at outlet of the two CLC reactors,CLC combined cycle shows completely different off-design thermodynamic characteristics regardless of the control strategy adopted.For the first control strategy,temperatures of the two CLC reactors both rise obviously as ambient temperature increases.IGV control adopted by the second and the third strategy has the effect to maintain one of the two reactors' temperatures at design condition when ambient temperature is above design point.Compare with the second strategy,the third would induce more severe decrease of efficiency and output power of the CLC combined cycle.展开更多
In the present paper,the design of a transonic centrifugal compressor stage with the inlet relative Mach number about 1.3 and detailed flow field investigation by three-dimensional CFD are described.Firstly the CFD pr...In the present paper,the design of a transonic centrifugal compressor stage with the inlet relative Mach number about 1.3 and detailed flow field investigation by three-dimensional CFD are described.Firstly the CFD program was validated by an experimental case.Then the preliminary aerodynamic design of stage completed through in-house one-dimensional code.Three types of impellers and two sets of stages were computed and analyzed.It can be found that the swept shape of leading edge has prominent influence on the performance and can enlarge the flow range.Similarly,the performance of the stage with swept impeller is better than others.The total pressure ratio and adiabatic efficiency of final geometry achieve 7:1 and 80% respectively.The vane diffuser with same airfoils along span increases attack angle at higher span,and the local flow structure and performance is deteriorated.展开更多
This paper considers the combination of hydrothermal degradation (HTD) and superheated steam (SHS) drying in disposal and processing of degradable organic wastes in municipal solid wastes (MSW). In SHS drying, a...This paper considers the combination of hydrothermal degradation (HTD) and superheated steam (SHS) drying in disposal and processing of degradable organic wastes in municipal solid wastes (MSW). In SHS drying, a fraction of dryer thermal energy input can be recovered and used to satisfy the heat requirement in maintaining the HTD operating temperature. Both energy and exergy analysis are applied to the combined process. The analysis covers ranges of dryer inlet temperatures of 202.38-234.19~C and feed water content of 32.5-65%. Thermal energy analysis shows that the combination of HTD and SHS drying can achieve thermal energy self-sufficiency (TES) by manipulating process variables. The exergy analysis indicates the location, type, and magnitude of the exergy losses during the whole process by applying the second law of thermodynamics.展开更多
Gas-solid flow in circulating fluidized bed (CFB) risers depends not only on operating conditions but also on exit configurations. Few studies investigated the effects of exit configurations on flow structure using ...Gas-solid flow in circulating fluidized bed (CFB) risers depends not only on operating conditions but also on exit configurations. Few studies investigated the effects of exit configurations on flow structure using computational fluid dynamics (CFD). This paper provides a 2D two-fluid model to simulate a cold bench-scale square cross-section riser with smooth and T-abrupt exits. The drag force between the gas and solid phases plays an important role in CFD. Since the drag force model based on homogeneous two- phase flow, such as the Wen-Yu correlation, could not capture the heterogeneous structures in gas-solid flow, the structure-dependent energy-minimization multi-scale (EMMS) drag force model (Wang, Ge, & Li, 2008), applicable for Geldart B particles (sand), was integrated into the two-fluid model. The calculated axial solids hold-up profiles were respectively exponential curve for smooth exit and C-shaped curve for T-abrupt exit, both consistent with experimental data. This study once again proves the key role of drag force in CFD simulation and also shows the validity of CFD simulation (two-fluid model) to describe exit effects on ~as-solid flow in CFB risers.展开更多
The solids acceleration length was investigated in a cold dense transport bed (0.10 m-IDx17 m-height) with three kinds of Silica sand. The solids circulation rate (Gs) was up to 954 kg/(m2s). The effects of oper...The solids acceleration length was investigated in a cold dense transport bed (0.10 m-IDx17 m-height) with three kinds of Silica sand. The solids circulation rate (Gs) was up to 954 kg/(m2s). The effects of operating conditions, particle properties, and riser structures on the solids acceleration length were investigated under high Gs conditions, with the effect of riser height non-negligible. The solids acceleration length increased with the increase of the riser height. Based on the experimental data, an empirical correlation was proposed to predict the solids acceleration length. Predictions of the correlation were in good agreement with the experimental data in this work and those from the literature over a wide range of Gs (18~954 kg/(m2s)).展开更多
Combustion performances of pure hydrogen in an experimental trapped vortex combustor have been tested underdifferent operating conditions. Pressure fluctuations, NOx emissions, OH distributions, and LBO (Lean Blow Out...Combustion performances of pure hydrogen in an experimental trapped vortex combustor have been tested underdifferent operating conditions. Pressure fluctuations, NOx emissions, OH distributions, and LBO (Lean Blow Out)were measured in the tests. Results indicate that the TVC test rig has successfully realized a double vortex constructionin the cavity zone in a wide range of flow conditions. Hydrogen combustion in the test rig has achievedan excellent LBO performance and relatively low NOx emissions. Through comparison of dynamic pressure data,OH fluctuation images, and NOx emissions, the optimal operating condition has been found out to be Φp=0.4,fuel split=0.4, and primary air/fuel premixed.展开更多
Because of their advantages of high efficiency and low cost, numerical research methods for large-scale circulating fluidized bed (CFB) apparatus are gaining ever more importance. This article presents a numer- ical...Because of their advantages of high efficiency and low cost, numerical research methods for large-scale circulating fluidized bed (CFB) apparatus are gaining ever more importance. This article presents a numer- ical study of gas-solid flow dynamics using the Eulerian granular multiphase model with a drag coefficient correction based on the energy-minimization multi-scale (EMMS) model. A three-dimensional, full-loop, time-dependent simulation of the hydrodynamics of a dense CFB apparatus is performed. The process parameters (e.g., operating and initial conditions) are provided in accordance with the real experiment to enhance the accuracy of the simulation. The axial profiles of the averaged solid volume fractions and the solids flux at the outlet of the cyclone are in reasonable agreement with experimental data, thereby verifying the applicability of the mathematical and physical models. As a result, the streamline in the riser and standpipe as well as the solids distribution contours at the cross sections is analyzed. Computational fluid dynamics (CFD) serves as a basis for CFB modeling to help resolve certain issues long in dispute but difficult to address experimentally. The results of this study provide the basis of a general approach to describing dynamic simulations of gas-solid flows.展开更多
文摘Adjoint-based optimization method is a hotspot in turbomachinery.First,this paper presents principles of adjoint method from Lagrange multiplier viewpoint.Second,combining a continuous route with thin layer RANS equations,we formulate adjoint equations and anti-physical boundary conditions.Due to the multi-stage environment in turbomachinery,an adjoint interrow mixing method is introduced.Numerical techniques of solving flow equations and adjoint equations are almost the same,and once they are converged respectively,the gradients of an objective function to design variables can be calculated using complex method efficiently.Third,integrating a shape perturbation parameterization and a simple steepest descent method,a frame of adjoint-based aerodynamic shape optimization for multi-stage turbomachinery is constructed.At last,an inverse design of an annular cascade is employed to validate the above approach,and adjoint field of an Aachen 1.5 stage turbine demonstrates the conservation and areflexia of the adjoint interrow mixing method.Then a direct redesign of a 1+1 counter-rotating turbine aiming to increase efficiency and apply constraints to mass flow rate and pressure ratio is taken.
基金support by the National High Technology R&D Project of China (No. 2006AA05A104)National Natural Science Foundation of China (No. 50806076,50876110)to the research work
文摘Flame structures of a syngas swirl-stabilized diffusion flame in a model combustor were measured using the OH-PLIF method under different fuel and air swirl intensity.The flame operated under atmospheric pressure with air and a typical low heating-value syngas with a composition of 28.5% CO,22.5% H2 and 49% N2 at a thermal power of 34 kW.Results indicate that increasing the air swirl intensity with the same fuel,swirl intensity flame structures showed little difference except a small reduction of flame length;but also,with the same air swirl intensity,fuel swirl intensity showed great influence on flame shape,length and reaction zone distribution.Therefore,compared with air swirl intensity,fuel swirl intensity appeared a key effect on the flame structure for the model combustor.Instantaneous OH-PLIF images showed that three distinct typical structures with an obvious difference of reaction zone distribution were found at low swirl intensity,while a much compacter flame structure with a single,stable and uniform reaction zone distribution was found at large fuel-air swirl intensity.It means that larger swirl intensity leads to efficient,stable combustion of the syngas diffusion flame.
基金support for this work by the International Science & Technology Cooperation Program of China (2010DFB70560) and(2010GH0902)
文摘The present work explores how much IGCC can benefit from warm gas clean-up(WGCU)in comparison with conventional cold gas clean-up(CGCU) and what are the respective contributions of dry particulates removal and warm gas desulfurization (WGD) in a plant-wide point of view. Influences of key parameters of WGD on ther- modynamic performance of IGCC plant including desulfurization temperature, oxygen concentration in the re- generation stream, and H2S removal efficiency are discussed. It is obtained that the net efficiency of IGCC with full WGCU experiences an improvement of 1.77 percentage points compared with IGCC with full CGCU. Of which, dry particulates removal without water scrubber contributes about 1 percentage point. The influence of desulfurization temperature on thermodynamic performance of IGCC with WGD is weak especially when it is higher than about 350~C, which indicates that more focus should be put on investment cost, technical feasibility and sorbent stability for the selection of optimal operation temperature. Generally, 2%-3% of oxygen concentra- tion in the regeneration stream might be reasonable in a thermodynamic performance point of view. In addition, the improvement of 0.31 percentage points can be obtained by removal of H2S in the syngas from 27 ppm to 3 ppm.
基金the National Natural Science Foundation of China (50776018)the Special Fund of the National Priority Basic Research of China (2007CB 210101) for the financial support of this project
文摘Chemical-looping combustion (CLC) is a novel combustion technique with inherent CO2 separation.Magnetite (Fe3O4) was selected as the oxygen carrier.Shenhua coal (Inner Mongolia,China),straw coke and natural coke were used as fuels for this study.Influences of operation temperatures,coal to Fe3O4 mass ratios,and different kinds of fuels on the reduction characteristics of the oxygen carrier were investigated using an atmosphere thermogravimetric analyzer (TGA).Scanning electron microscopy (SEM) was used to analyse the characteristic of the solid residues.Experimental results shown that the reaction between the coal and the oxygen carrier become strong at a temperature of higher than 800℃.As the operation temperature rises,the reduction conversion rate increases.At the temperatures of 850oС,900℃,and 950℃,the reduction conversion rates were 37.1%,46.5%,and 54.1% respectively.However,SEM images show that at the temperature of higher than 950℃,the iron oxides become melted and sintered.The possible operation temperature should be kept around 900℃.When the mass ratios of coal to Fe3O4 were 5/95,10/90,15/85,and 20/80,the reduction conversion rates were 29.5%,40.8%,46.5%,and 46.6% respectively.With the increase of coal,the conversion rate goes up.But there exist an optimal ratio around 15/85.Comparisons based on different kinds of fuels show that the solid fuel with a higher volatile and a more developed pore structure is conducive to the reduction reactivity of the oxygen carrier.
基金supported by the National High Technology R&D Project of China (No 2006AA05A109)the National Key Fundamental Research Program of China (No2007CB210102)
文摘The present work investigates the influence of ambient temperature on the steady-state off-design thermodynamic performance of a chemical looping combustion(CLC) combined cycle.A sensitivity analysis of the CLC reactor system was conducted,which shows that the parameters that influence the temperatures of the CLC reactors most are the flow rate and temperature of air entering the air reactor.For the ambient temperature variation,three off-design control strategies have been assumed and compared:1) without any Inlet Guide Vane(IGV) control,2) IGV control to maintain air reactor temperature and 3) IGV control to maintain constant fuel reactor temperature,aside from fuel flow rate adjusting.Results indicate that,compared with the conventional combined cycle,due to the requirement of pressure balance at outlet of the two CLC reactors,CLC combined cycle shows completely different off-design thermodynamic characteristics regardless of the control strategy adopted.For the first control strategy,temperatures of the two CLC reactors both rise obviously as ambient temperature increases.IGV control adopted by the second and the third strategy has the effect to maintain one of the two reactors' temperatures at design condition when ambient temperature is above design point.Compare with the second strategy,the third would induce more severe decrease of efficiency and output power of the CLC combined cycle.
文摘In the present paper,the design of a transonic centrifugal compressor stage with the inlet relative Mach number about 1.3 and detailed flow field investigation by three-dimensional CFD are described.Firstly the CFD program was validated by an experimental case.Then the preliminary aerodynamic design of stage completed through in-house one-dimensional code.Three types of impellers and two sets of stages were computed and analyzed.It can be found that the swept shape of leading edge has prominent influence on the performance and can enlarge the flow range.Similarly,the performance of the stage with swept impeller is better than others.The total pressure ratio and adiabatic efficiency of final geometry achieve 7:1 and 80% respectively.The vane diffuser with same airfoils along span increases attack angle at higher span,and the local flow structure and performance is deteriorated.
文摘This paper considers the combination of hydrothermal degradation (HTD) and superheated steam (SHS) drying in disposal and processing of degradable organic wastes in municipal solid wastes (MSW). In SHS drying, a fraction of dryer thermal energy input can be recovered and used to satisfy the heat requirement in maintaining the HTD operating temperature. Both energy and exergy analysis are applied to the combined process. The analysis covers ranges of dryer inlet temperatures of 202.38-234.19~C and feed water content of 32.5-65%. Thermal energy analysis shows that the combination of HTD and SHS drying can achieve thermal energy self-sufficiency (TES) by manipulating process variables. The exergy analysis indicates the location, type, and magnitude of the exergy losses during the whole process by applying the second law of thermodynamics.
基金supported by National High-tech Research and Development Program of China under Grant No.2006AA05A103
文摘Gas-solid flow in circulating fluidized bed (CFB) risers depends not only on operating conditions but also on exit configurations. Few studies investigated the effects of exit configurations on flow structure using computational fluid dynamics (CFD). This paper provides a 2D two-fluid model to simulate a cold bench-scale square cross-section riser with smooth and T-abrupt exits. The drag force between the gas and solid phases plays an important role in CFD. Since the drag force model based on homogeneous two- phase flow, such as the Wen-Yu correlation, could not capture the heterogeneous structures in gas-solid flow, the structure-dependent energy-minimization multi-scale (EMMS) drag force model (Wang, Ge, & Li, 2008), applicable for Geldart B particles (sand), was integrated into the two-fluid model. The calculated axial solids hold-up profiles were respectively exponential curve for smooth exit and C-shaped curve for T-abrupt exit, both consistent with experimental data. This study once again proves the key role of drag force in CFD simulation and also shows the validity of CFD simulation (two-fluid model) to describe exit effects on ~as-solid flow in CFB risers.
基金the financial support of National High-tech Research and Development Program of China (863 Program) (No. 2006AA05A103)that of Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (No. KGCX2-YW-348)
文摘The solids acceleration length was investigated in a cold dense transport bed (0.10 m-IDx17 m-height) with three kinds of Silica sand. The solids circulation rate (Gs) was up to 954 kg/(m2s). The effects of operating conditions, particle properties, and riser structures on the solids acceleration length were investigated under high Gs conditions, with the effect of riser height non-negligible. The solids acceleration length increased with the increase of the riser height. Based on the experimental data, an empirical correlation was proposed to predict the solids acceleration length. Predictions of the correlation were in good agreement with the experimental data in this work and those from the literature over a wide range of Gs (18~954 kg/(m2s)).
基金National Natural Science Foundation of China (No. 50576098)the National High Technology R&D Project of China (No.2006AA05A104)
文摘Combustion performances of pure hydrogen in an experimental trapped vortex combustor have been tested underdifferent operating conditions. Pressure fluctuations, NOx emissions, OH distributions, and LBO (Lean Blow Out)were measured in the tests. Results indicate that the TVC test rig has successfully realized a double vortex constructionin the cavity zone in a wide range of flow conditions. Hydrogen combustion in the test rig has achievedan excellent LBO performance and relatively low NOx emissions. Through comparison of dynamic pressure data,OH fluctuation images, and NOx emissions, the optimal operating condition has been found out to be Φp=0.4,fuel split=0.4, and primary air/fuel premixed.
基金the support of the National Natural Science Foundation of China(51006106)Research Project of Lianyungang(CXY1202)the National High Technology Research and Development of China 863 Program(2006AA05A103)
文摘Because of their advantages of high efficiency and low cost, numerical research methods for large-scale circulating fluidized bed (CFB) apparatus are gaining ever more importance. This article presents a numer- ical study of gas-solid flow dynamics using the Eulerian granular multiphase model with a drag coefficient correction based on the energy-minimization multi-scale (EMMS) model. A three-dimensional, full-loop, time-dependent simulation of the hydrodynamics of a dense CFB apparatus is performed. The process parameters (e.g., operating and initial conditions) are provided in accordance with the real experiment to enhance the accuracy of the simulation. The axial profiles of the averaged solid volume fractions and the solids flux at the outlet of the cyclone are in reasonable agreement with experimental data, thereby verifying the applicability of the mathematical and physical models. As a result, the streamline in the riser and standpipe as well as the solids distribution contours at the cross sections is analyzed. Computational fluid dynamics (CFD) serves as a basis for CFB modeling to help resolve certain issues long in dispute but difficult to address experimentally. The results of this study provide the basis of a general approach to describing dynamic simulations of gas-solid flows.