Bismuth oxybromide(BiOBr) with a hierarchical microcube morphology was successfully synthesized via microwave-assisted ionothermal self-assembly method. The as-obtained BiOBr was composed of regular multi-layered na...Bismuth oxybromide(BiOBr) with a hierarchical microcube morphology was successfully synthesized via microwave-assisted ionothermal self-assembly method. The as-obtained BiOBr was composed of regular multi-layered nanosheets, which were formed by selective adsorption of ionic liquids on the Br-terminated surface, followed by the formation of hydrogen bond-co-π-π stacking.The synthesized BiOBr exhibited high activity, excellent stability, and superior mineralization ability in the photocatalytic degradation of organic dyes under visible light owing to its enhanced light absorbance and narrow bandgap. Furthermore, photo-generated electrons were determined to be the main active species by comparison with different trapping agents used in the photocatalytic reactions.展开更多
基金supported by the National Natural Science Foundation of China(20937003,21261140333,21237003,21207091,21577092,2171101231)Shanghai Government(12230706000,11JC1409000,12YZ091,15520711300)+1 种基金Yunnan Applied Basic Research Project of Province(2013FZ109,2016FB016)Key Projects of Yunnan Provincial Department of Education(2015Z183,2016ZZX207)~~
文摘Bismuth oxybromide(BiOBr) with a hierarchical microcube morphology was successfully synthesized via microwave-assisted ionothermal self-assembly method. The as-obtained BiOBr was composed of regular multi-layered nanosheets, which were formed by selective adsorption of ionic liquids on the Br-terminated surface, followed by the formation of hydrogen bond-co-π-π stacking.The synthesized BiOBr exhibited high activity, excellent stability, and superior mineralization ability in the photocatalytic degradation of organic dyes under visible light owing to its enhanced light absorbance and narrow bandgap. Furthermore, photo-generated electrons were determined to be the main active species by comparison with different trapping agents used in the photocatalytic reactions.