Compared with teenage patients,adult patients generally show a slower rate of tooth movement and more pronounced alveolar bone loss during orthodontic treatment,indicating the maladaptation of alveolar bone homeostasi...Compared with teenage patients,adult patients generally show a slower rate of tooth movement and more pronounced alveolar bone loss during orthodontic treatment,indicating the maladaptation of alveolar bone homeostasis under orthodontic force.However,this phenomenon is not well-elucidated to date,leading to increased treatment difficulties and unsatisfactory treatment outcomes in adult orthodontics.Aiming to provide a comprehensive knowledge and further inspire insightful understanding towards this issue,this review summarizes the current evidence and underlying mechanisms.The age-related abatements in mechanosensing and mechanotransduction in adult cells and periodontal tissue may contribute to retarded and unbalanced bone metabolism,thus hindering alveolar bone reconstruction during orthodontic treatment.To this end,periodontal surgery,physical and chemical cues are being developed to reactivate or rejuvenate the aging periodontium and restore the dynamic equilibrium of orthodontic-mediated alveolar bone metabolism.We anticipate that this review will present a general overview of the role that aging plays in orthodontic alveolar bone metabolism and shed new light on the prospective ways out of the impasse.展开更多
Thermal oxidation and hydrogen annealing were applied on a 100μm thick Al-doped p-type 4H-Si C epitaxial wafer to modulate the minority carrier lifetime,which was investigated by microwave photoconductive decay(μ-PC...Thermal oxidation and hydrogen annealing were applied on a 100μm thick Al-doped p-type 4H-Si C epitaxial wafer to modulate the minority carrier lifetime,which was investigated by microwave photoconductive decay(μ-PCD).The minority carrier lifetime decreased after each thermal oxidation.On the contrary,with the hydrogen annealing time increasing to3 hours,the minority carrier lifetime increased from 1.1μs(as-grown)to 3.14μs and then saturated after the annealing time reached 4 hours.The increase of surface roughness from 0.236 nm to 0.316 nm may also be one of the reasons for limiting the further improvement of the minority carrier lifetimes.Moreover,the whole wafer mappings of minority carrier lifetimes before and after hydrogen annealing were measured and discussed.The average minority carrier lifetime was up to 1.94μs and non-uniformity of carrier lifetime reached 38%after 4-hour hydrogen annealing.The increasing minority carrier lifetimes could be attributed to the double mechanisms of excess carbon atoms diffusion caused by selective etching of Si atoms and passivation of deep-level defects by hydrogen atoms.展开更多
As a member of the AFF(AF4/FMR2)family,AFF4 is a transcription elongation factor that is a component of the super elongation complex.AFF4 serves as a scaffolding protein that connects transcription factors and promote...As a member of the AFF(AF4/FMR2)family,AFF4 is a transcription elongation factor that is a component of the super elongation complex.AFF4 serves as a scaffolding protein that connects transcription factors and promotes gene transcription through elongation and chromatin remodelling.Here,we investigated the effect of AFF4 on human dental follicle cells(DFCs)in osteogenic differentiation.In this study,we found that small interfering RNA-mediated depletion of AFF4 resulted in decreased alkaline phosphatase(ALP)activity and impaired mineralization.In addition,the expression of osteogenic-related genes(DLX5,SP7,RUNX2 and BGLAP)was significantly downregulated.In contrast,lentivirus-mediated overexpression of AFF4 significantly enhanced the osteogenic potential of human DFCs.Mechanistically,we found that both the mRNA and protein levels of ALKBH1,a critical regulator of epigenetics,changed in accordance with AFF4 expression levels.Overexpression of ALKBH1 in AFF4-depleted DFCs partially rescued the impairment of osteogenic differentiation.Our data indicated that AFF4 promoted the osteogenic differentiation of DFCs by upregulating the transcription of ALKBH1.展开更多
A 4H-SiC trench gate metal-oxide-semiconductor field-effect transistor(UMOSFET)with semi-super-junction shiel-ded structure(SS-UMOS)is proposed and compared with conventional trench MOSFET(CT-UMOS)in this work.The adv...A 4H-SiC trench gate metal-oxide-semiconductor field-effect transistor(UMOSFET)with semi-super-junction shiel-ded structure(SS-UMOS)is proposed and compared with conventional trench MOSFET(CT-UMOS)in this work.The advantage of the proposed structure is given by comprehensive study of the mechanism of the local semi-super-junction structure at the bottom of the trench MOSFET.In particular,the influence of the bias condition of the p-pillar at the bottom of the trench on the static and dynamic performances of the device is compared and revealed.The on-resistance of SS-UMOS with grounded(G)and ungrounded(NG)p-pillar is reduced by 52%(G)and 71%(NG)compared to CT-UMOS,respectively.Additionally,gate ox-ide in the GSS-UMOS is fully protected by the p-shield layer as well as semi-super-junction structure under the trench and p-base regions.Thus,a reduced electric-field of 2 MV/cm can be achieved at the corner of the p-shield layer.However,the quasi-intrinsic protective layer cannot be formed in NGSS-UMOS due to the charge storage effect in the floating p-pillar,resulting in a large electric field of 2.7 MV/cm at the gate oxide layer.Moreover,the total switching loss of GSS-UMOS is 1.95 mJ/cm2 and is reduced by 18%compared with CT-UMOS.On the contrary,the NGSS-UMOS has the slowest overall switching speed due to the weakened shielding effect of the p-pillar and the largest gate-to-drain capacitance among the three.The proposed GSS-UMOS plays an important role in high-voltage and high-frequency applications,and will provide a valuable idea for device design and circuit applications.展开更多
The agricultural scientific research project funding is an important prerequisite for the implementation of agricultural scientific research project,and an essential basic condition to support agricultural research. I...The agricultural scientific research project funding is an important prerequisite for the implementation of agricultural scientific research project,and an essential basic condition to support agricultural research. In recent years,China has paid great attention to the development of scientific research,and increased the input of scientific research funds,but there are some shortcomings in funding management during the implementation of the project. Based on many years of practice,this paper expounds the main problems in the current funding management for agricultural scientific research project,and brings forward the relevant recommendations,in order to provide a reference for the scientific management of agricultural scientific research project funding in the new situation.展开更多
With more and more lithium-ion batteries(LIBs)being put into production and application,precious metals such as lithium and cobalt are scarce,so it is imminent to recover various strategic metal resources from spent L...With more and more lithium-ion batteries(LIBs)being put into production and application,precious metals such as lithium and cobalt are scarce,so it is imminent to recover various strategic metal resources from spent LIBs.Meanwhile,the complex and difficult problem of separating and recovering metals from leaching solutions has been an urgent question that needs to be resolved.In this work,a phosphoric acid-based deep eutectic solvent(DES)was developed for extracting metals from spent LIBs and one-step selectively separating and efficiently recovering transition metal.The prepared DES shows excellent extraction performance for Li(100%)and Co(92.8%)at 100°C.In addition,the extraction system can effectively separate and precipitate Co through its own components,avoiding the introduction of new precipitants and the destruction of the original composition structure of DES.This also contributes to the good cycle stability of the extraction system with excellent extraction performance for Li(94.3%)and Co(80.8%)after 5 cycles.This work proposes a green method for one-step selectively separating and recovering valuable metals from spent LIBs.展开更多
Augmented reality(AR)displays,heralded as the next-generation platform for spatial computing,metaverse,and digital twins,empower users to perceive digital images overlaid with real-world environment,fostering a deeper...Augmented reality(AR)displays,heralded as the next-generation platform for spatial computing,metaverse,and digital twins,empower users to perceive digital images overlaid with real-world environment,fostering a deeper level of human-digital interactions.With the rapid evolution of couplers,waveguide-based AR displays have streamlined the entire system,boasting a slim form factor and high optical performance.However,challenges persist in the waveguide combiner,including low optical efficiency and poor image uniformity,significantly hindering the long-term usage and user experience.In this paper,we first analyze the root causes of the low optical efficiency and poor uniformity in waveguide-based AR displays.We then discover and elucidate an anomalous polarization conversion phenomenon inherent to polarization volume gratings(PVGs)when the incident light direction does not satisfy the Bragg condition.This new property is effectively leveraged to circumvent the tradeoff between in-coupling efficiency and eyebox uniformity.Through feasibility demonstration experiments,we measure the light leakage in multiple PVGs with varying thicknesses using a laser source and a liquid-crystal-on-silicon light engine.The experiment corroborates the polarization conversion phenomenon,and the results align with simulation well.To explore the potential of such a polarization conversion phenomenon further,we design and simulate a waveguide display with a 50°field of view.Through achieving first-order polarization conversion in a PVG,the in-coupling efficiency and uniformity are improved by 2 times and 2.3 times,respectively,compared to conventional couplers.This groundbreaking discovery holds immense potential for revolutionizing next-generation waveguide-based AR displays,promising a higher efficiency and superior image uniformity.展开更多
Background:Clinical studies have shown that atherosclerotic cardiovascular disease and cancer often co‐exist in the same individual.The present study aimed to investigate the role of high‐fat‐diet(HFD)‐induced obe...Background:Clinical studies have shown that atherosclerotic cardiovascular disease and cancer often co‐exist in the same individual.The present study aimed to investigate the role of high‐fat‐diet(HFD)‐induced obesity in the coexistence of the two diseases and the underlying mechanism in apolipoprotein E‐knockout(ApoE^(−/−))mice.Methods:Male ApoE^(−/−)mice were fed with a HFD or a normal diet(ND)for 15 weeks.On the first day of Week 13,the mice were inoculated subcutaneously in the right axilla with Lewis lung cancer cells.At Weeks 12 and 15,serum lectin‐like oxidized low‐density lipoprotein receptor‐1(LOX‐1)and vascular endothelial growth factor levels were measured by enzyme‐linked immunosorbent assay,and blood monocytes and macrophages were measured by fluorescence‐activated cell sorting.At Week 15,the volume and weight of the local subcutaneous lung cancer and metastatic lung cancer and the amount of aortic atherosclerosis were measured.Results:At Week 15,compared with mice in the ND group,those in the HFD group had a larger volume of local subcutaneous cancer(p=0.0004),heavier tumors(p=0.0235),more metastatic cancer in the lungs(p<0.0001),a larger area of lung involved in metastatic cancer(p=0.0031),and larger areas of atherosclerosis in the aorta(p<0.0001).At Week 12,serum LOX‐1,serum vascular endothelial growth factor,and proportions of blood monocytes and macrophages were significantly higher in the HFD group than those in the ND group(p=0.0002,p=0.0029,p=0.0480,and p=0.0106,respectively);this trend persisted until Week 15(p=0.0014,p=0.0012,p=0.0001,and p=0.0204).Conclusions:In this study,HFD‐induced obesity could simultaneously promote progression of lung cancer and atherosclerosis in the same mouse.HFD‐induced upregulation of LOX‐1 may play an important role in the simultaneous progression of these two conditions via the inflammatory response and VEGF.展开更多
Additive manufacturing(AM)has the potential to transform manufacturing by enabling previously un-thinkable products,digital inventory and delivery,and distributed manufacturing.Here we presented an extrusion-based met...Additive manufacturing(AM)has the potential to transform manufacturing by enabling previously un-thinkable products,digital inventory and delivery,and distributed manufacturing.Here we presented an extrusion-based metal AM method(refer to“SoftTouch”depositionin thefiledpatent)thatis suitablefor making the metal feedstock flowable prior to the deposition through dynamic recrystallization induced grain refinement at elevated temperatures.The flowable metal was extruded out of the printer head like a paste for building dense metal parts with fine equiaxed grains and wrought mechanical properties.Off-the-shelf metal rods were used as feedstock and the printing process was completed in an open-air environment,avoiding pricy powders and costly inert or vacuum conditions.The resulting multi-layer de-posited 6061 aluminum alloys yield strength and ductility comparable to wrought 6061 aluminum alloys after the same T6 heat treatment.The extrusion-based metal AM method can also be advanced as green manufacturing technologies for fabricating novel alloys and composites,adding novel features to existing parts,repairing damaged metal parts,and welding advanced metals for supporting sustainable manufac-turing,in addition to being developed into a cost-effective manufacturing process for the fabrication of dense metal of complex structural forms.展开更多
The Hot Universe Baryon Surveyor(HUBS) is a proposed space-based X-ray telescope for detecting X-ray emissions from the hot gas content in our universe. With its unprecedented spatially-resolved high-resolution spectr...The Hot Universe Baryon Surveyor(HUBS) is a proposed space-based X-ray telescope for detecting X-ray emissions from the hot gas content in our universe. With its unprecedented spatially-resolved high-resolution spectroscopy and large field of view,the HUBS mission will be uniquely qualified to measure the physical and chemical properties of the hot gas in the interstellar medium, the circumgalactic medium, the intergalactic medium, and the intracluster medium. These measurements will be valuable for two key scientific goals of HUBS, namely to unravel the AGN and stellar feedback physics that governs the formation and evolution of galaxies, and to probe the baryon budget and multi-phase states from galactic to cosmological scales. In addition to these two goals, the HUBS mission will also help us solve some problems in the fields of galaxy clusters, AGNs, difuse X-ray backgrounds, supernova remnants, and compact objects. This paper discusses the perspective of advancing these fields using the HUBS telescope.展开更多
Optical parametric amplification(OPA)represents a powerful solution to achieve broadband amplification in wavelength ranges beyond the scope of conventional gain media,for generating high-power optical pulses,optical ...Optical parametric amplification(OPA)represents a powerful solution to achieve broadband amplification in wavelength ranges beyond the scope of conventional gain media,for generating high-power optical pulses,optical microcombs,entangled photon pairs and a wide range of other applications.Here,we demonstrate optical parametric amplifiers based on silicon nitride(Si3N4)waveguides integrated with two-dimensional(2D)layered graphene oxide(GO)films.We achieve precise control over the thickness,length,and position of the GO films using a transfer-free,layer-by-layer coating method combined with accurate window opening in the chip cladding using photolithography.Detailed OPA measurements with a pulsed pump for the fabricated devices with different GO film thicknesses and lengths show a maximum parametric gain of~24.0 dB,representing a~12.2 dB improvement relative to the device without GO.We perform a theoretical analysis of the device performance,achieving good agreement with experiment and showing that there is substantial room for further improvement.This work represents the first demonstration of integrating 2D materials on chips to enhance the OPA performance,providing a new way of achieving high performance photonic integrated OPA by incorporating 2D materials.展开更多
Great strides have been made towards our understanding of the Universe over the past few decades.Surprisingly,only roughly 5%of what the Universe is made of is in the form of matter that is composed of the elements in...Great strides have been made towards our understanding of the Universe over the past few decades.Surprisingly,only roughly 5%of what the Universe is made of is in the form of matter that is composed of the elements in the periodic table.The other 95% is,at present,completely unknown,and is conveniently referred to as dark matter and dark energy,which certainly represents new physics at work(see,e.g.,Ref.[1]for a review).展开更多
Selectively electrochemical conversion of CO2 into organic fuel using renewable electricity is one of the most sought-after processes.In this paper,we report the electrochemical reduction of CO2(CO2RR)on the nanoporou...Selectively electrochemical conversion of CO2 into organic fuel using renewable electricity is one of the most sought-after processes.In this paper,we report the electrochemical reduction of CO2(CO2RR)on the nanoporous Ag electrodes made of compacted Ag nanoparticles(AgNPs),which were prepared by one-step reduction in the water phase with or without the surfactant sodium dodecyl sulfate(SDS).The scanning electron microscope(SEM)characterizations show that the compacted Ag electrodes have the nanoporous morphology formed by stacking AgNPs.Compared with the nanoporous Ag electrode without SDS modification(C-AgNPs),the SDS-modified AgNPs electrode(C-AgNPs-SDS)is highly effective in improving selective CO production in a wide range of potentials(-0.69 V--1.19 V,vs.RHE),with a Faradaic efficiency of 92.2% and a current density of -8.23 mA·cm^-2 for CO production at -0.79 V(vs.RHE).C-AgNPs-SDS is also catalytically stable with only less than 7% deactivation after 8 h of continuous electrolysis.展开更多
基金supported by grants from the National Key R&D Program of China(2021YFC2400403)the National Natural Science Foundation of China(82201017,51972005)+1 种基金the Young Elite Scientist Sponsorship Program by CAST(2022QNRC001)the China Postdoctoral Science Foundation(2022M710257).
文摘Compared with teenage patients,adult patients generally show a slower rate of tooth movement and more pronounced alveolar bone loss during orthodontic treatment,indicating the maladaptation of alveolar bone homeostasis under orthodontic force.However,this phenomenon is not well-elucidated to date,leading to increased treatment difficulties and unsatisfactory treatment outcomes in adult orthodontics.Aiming to provide a comprehensive knowledge and further inspire insightful understanding towards this issue,this review summarizes the current evidence and underlying mechanisms.The age-related abatements in mechanosensing and mechanotransduction in adult cells and periodontal tissue may contribute to retarded and unbalanced bone metabolism,thus hindering alveolar bone reconstruction during orthodontic treatment.To this end,periodontal surgery,physical and chemical cues are being developed to reactivate or rejuvenate the aging periodontium and restore the dynamic equilibrium of orthodontic-mediated alveolar bone metabolism.We anticipate that this review will present a general overview of the role that aging plays in orthodontic alveolar bone metabolism and shed new light on the prospective ways out of the impasse.
基金Project supported by Key Area Research and Development Project of Guangdong Province,China(Grant No.2020B010170002)the Science Challenge Project(Grant No.TZ2018003-1-101)+4 种基金the Natural Science Foundation of Fujian Province of China for Distinguished Young Scholars(Grant No.2020J06002)the Science and Technology Project of Fujian Province of China(Grant No.2020I0001)the Fundamental Research Funds for the Central Universities(Grant Nos.20720190049 and 20720190053)the Science and Technology Key Projects of Xiamen(Grant No.3502ZCQ20191001)the National Natural Science Foundation of China(Grant No.51871189)。
文摘Thermal oxidation and hydrogen annealing were applied on a 100μm thick Al-doped p-type 4H-Si C epitaxial wafer to modulate the minority carrier lifetime,which was investigated by microwave photoconductive decay(μ-PCD).The minority carrier lifetime decreased after each thermal oxidation.On the contrary,with the hydrogen annealing time increasing to3 hours,the minority carrier lifetime increased from 1.1μs(as-grown)to 3.14μs and then saturated after the annealing time reached 4 hours.The increase of surface roughness from 0.236 nm to 0.316 nm may also be one of the reasons for limiting the further improvement of the minority carrier lifetimes.Moreover,the whole wafer mappings of minority carrier lifetimes before and after hydrogen annealing were measured and discussed.The average minority carrier lifetime was up to 1.94μs and non-uniformity of carrier lifetime reached 38%after 4-hour hydrogen annealing.The increasing minority carrier lifetimes could be attributed to the double mechanisms of excess carbon atoms diffusion caused by selective etching of Si atoms and passivation of deep-level defects by hydrogen atoms.
基金This study was supported by a grant from the National Natural Science Foundation of China(NSFC,81901040).
文摘As a member of the AFF(AF4/FMR2)family,AFF4 is a transcription elongation factor that is a component of the super elongation complex.AFF4 serves as a scaffolding protein that connects transcription factors and promotes gene transcription through elongation and chromatin remodelling.Here,we investigated the effect of AFF4 on human dental follicle cells(DFCs)in osteogenic differentiation.In this study,we found that small interfering RNA-mediated depletion of AFF4 resulted in decreased alkaline phosphatase(ALP)activity and impaired mineralization.In addition,the expression of osteogenic-related genes(DLX5,SP7,RUNX2 and BGLAP)was significantly downregulated.In contrast,lentivirus-mediated overexpression of AFF4 significantly enhanced the osteogenic potential of human DFCs.Mechanistically,we found that both the mRNA and protein levels of ALKBH1,a critical regulator of epigenetics,changed in accordance with AFF4 expression levels.Overexpression of ALKBH1 in AFF4-depleted DFCs partially rescued the impairment of osteogenic differentiation.Our data indicated that AFF4 promoted the osteogenic differentiation of DFCs by upregulating the transcription of ALKBH1.
基金supported by the National Natural Science Foundation of China(Grant No.62104222)the Natural Science Foundation of Fujian Province of China for Distinguished Young Scholars(Grant No.2020J06002)+3 种基金the Science and Technology Project of Fujian Province of China(Grant No.2020I0001)the Science and Technology Key Projects of Xiamen(Grant No.3502ZCQ20191001)Shenzhen Science and Technology Program(Grant No.JSGG20201102-155800003)Jiangxi Provincial Natural Science Foundation(Grant No.20212ACB212005).
文摘A 4H-SiC trench gate metal-oxide-semiconductor field-effect transistor(UMOSFET)with semi-super-junction shiel-ded structure(SS-UMOS)is proposed and compared with conventional trench MOSFET(CT-UMOS)in this work.The advantage of the proposed structure is given by comprehensive study of the mechanism of the local semi-super-junction structure at the bottom of the trench MOSFET.In particular,the influence of the bias condition of the p-pillar at the bottom of the trench on the static and dynamic performances of the device is compared and revealed.The on-resistance of SS-UMOS with grounded(G)and ungrounded(NG)p-pillar is reduced by 52%(G)and 71%(NG)compared to CT-UMOS,respectively.Additionally,gate ox-ide in the GSS-UMOS is fully protected by the p-shield layer as well as semi-super-junction structure under the trench and p-base regions.Thus,a reduced electric-field of 2 MV/cm can be achieved at the corner of the p-shield layer.However,the quasi-intrinsic protective layer cannot be formed in NGSS-UMOS due to the charge storage effect in the floating p-pillar,resulting in a large electric field of 2.7 MV/cm at the gate oxide layer.Moreover,the total switching loss of GSS-UMOS is 1.95 mJ/cm2 and is reduced by 18%compared with CT-UMOS.On the contrary,the NGSS-UMOS has the slowest overall switching speed due to the weakened shielding effect of the p-pillar and the largest gate-to-drain capacitance among the three.The proposed GSS-UMOS plays an important role in high-voltage and high-frequency applications,and will provide a valuable idea for device design and circuit applications.
文摘The agricultural scientific research project funding is an important prerequisite for the implementation of agricultural scientific research project,and an essential basic condition to support agricultural research. In recent years,China has paid great attention to the development of scientific research,and increased the input of scientific research funds,but there are some shortcomings in funding management during the implementation of the project. Based on many years of practice,this paper expounds the main problems in the current funding management for agricultural scientific research project,and brings forward the relevant recommendations,in order to provide a reference for the scientific management of agricultural scientific research project funding in the new situation.
基金the financial support for the financial supports from the National Natural Science Foundation of China(grant Nos.21908082,22278426,21878133,and 22178154)the Natural Science Foundation of Jiangsu Province(BK20190854)+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB629)the China Postdoctoral Science Foundation(2021M701472)
文摘With more and more lithium-ion batteries(LIBs)being put into production and application,precious metals such as lithium and cobalt are scarce,so it is imminent to recover various strategic metal resources from spent LIBs.Meanwhile,the complex and difficult problem of separating and recovering metals from leaching solutions has been an urgent question that needs to be resolved.In this work,a phosphoric acid-based deep eutectic solvent(DES)was developed for extracting metals from spent LIBs and one-step selectively separating and efficiently recovering transition metal.The prepared DES shows excellent extraction performance for Li(100%)and Co(92.8%)at 100°C.In addition,the extraction system can effectively separate and precipitate Co through its own components,avoiding the introduction of new precipitants and the destruction of the original composition structure of DES.This also contributes to the good cycle stability of the extraction system with excellent extraction performance for Li(94.3%)and Co(80.8%)after 5 cycles.This work proposes a green method for one-step selectively separating and recovering valuable metals from spent LIBs.
文摘Augmented reality(AR)displays,heralded as the next-generation platform for spatial computing,metaverse,and digital twins,empower users to perceive digital images overlaid with real-world environment,fostering a deeper level of human-digital interactions.With the rapid evolution of couplers,waveguide-based AR displays have streamlined the entire system,boasting a slim form factor and high optical performance.However,challenges persist in the waveguide combiner,including low optical efficiency and poor image uniformity,significantly hindering the long-term usage and user experience.In this paper,we first analyze the root causes of the low optical efficiency and poor uniformity in waveguide-based AR displays.We then discover and elucidate an anomalous polarization conversion phenomenon inherent to polarization volume gratings(PVGs)when the incident light direction does not satisfy the Bragg condition.This new property is effectively leveraged to circumvent the tradeoff between in-coupling efficiency and eyebox uniformity.Through feasibility demonstration experiments,we measure the light leakage in multiple PVGs with varying thicknesses using a laser source and a liquid-crystal-on-silicon light engine.The experiment corroborates the polarization conversion phenomenon,and the results align with simulation well.To explore the potential of such a polarization conversion phenomenon further,we design and simulate a waveguide display with a 50°field of view.Through achieving first-order polarization conversion in a PVG,the in-coupling efficiency and uniformity are improved by 2 times and 2.3 times,respectively,compared to conventional couplers.This groundbreaking discovery holds immense potential for revolutionizing next-generation waveguide-based AR displays,promising a higher efficiency and superior image uniformity.
基金National Natural Science Foundation of China,Grant/Award Numbers:81770237,82173450。
文摘Background:Clinical studies have shown that atherosclerotic cardiovascular disease and cancer often co‐exist in the same individual.The present study aimed to investigate the role of high‐fat‐diet(HFD)‐induced obesity in the coexistence of the two diseases and the underlying mechanism in apolipoprotein E‐knockout(ApoE^(−/−))mice.Methods:Male ApoE^(−/−)mice were fed with a HFD or a normal diet(ND)for 15 weeks.On the first day of Week 13,the mice were inoculated subcutaneously in the right axilla with Lewis lung cancer cells.At Weeks 12 and 15,serum lectin‐like oxidized low‐density lipoprotein receptor‐1(LOX‐1)and vascular endothelial growth factor levels were measured by enzyme‐linked immunosorbent assay,and blood monocytes and macrophages were measured by fluorescence‐activated cell sorting.At Week 15,the volume and weight of the local subcutaneous lung cancer and metastatic lung cancer and the amount of aortic atherosclerosis were measured.Results:At Week 15,compared with mice in the ND group,those in the HFD group had a larger volume of local subcutaneous cancer(p=0.0004),heavier tumors(p=0.0235),more metastatic cancer in the lungs(p<0.0001),a larger area of lung involved in metastatic cancer(p=0.0031),and larger areas of atherosclerosis in the aorta(p<0.0001).At Week 12,serum LOX‐1,serum vascular endothelial growth factor,and proportions of blood monocytes and macrophages were significantly higher in the HFD group than those in the ND group(p=0.0002,p=0.0029,p=0.0480,and p=0.0106,respectively);this trend persisted until Week 15(p=0.0014,p=0.0012,p=0.0001,and p=0.0204).Conclusions:In this study,HFD‐induced obesity could simultaneously promote progression of lung cancer and atherosclerosis in the same mouse.HFD‐induced upregulation of LOX‐1 may play an important role in the simultaneous progression of these two conditions via the inflammatory response and VEGF.
基金This work was financially supported by the University of Michi-gan College of Engineering startup grant and FL and PD acknowl-edge the technical support from the Michigan Center for Materials Characterization(MC^(2)).
文摘Additive manufacturing(AM)has the potential to transform manufacturing by enabling previously un-thinkable products,digital inventory and delivery,and distributed manufacturing.Here we presented an extrusion-based metal AM method(refer to“SoftTouch”depositionin thefiledpatent)thatis suitablefor making the metal feedstock flowable prior to the deposition through dynamic recrystallization induced grain refinement at elevated temperatures.The flowable metal was extruded out of the printer head like a paste for building dense metal parts with fine equiaxed grains and wrought mechanical properties.Off-the-shelf metal rods were used as feedstock and the printing process was completed in an open-air environment,avoiding pricy powders and costly inert or vacuum conditions.The resulting multi-layer de-posited 6061 aluminum alloys yield strength and ductility comparable to wrought 6061 aluminum alloys after the same T6 heat treatment.The extrusion-based metal AM method can also be advanced as green manufacturing technologies for fabricating novel alloys and composites,adding novel features to existing parts,repairing damaged metal parts,and welding advanced metals for supporting sustainable manufac-turing,in addition to being developed into a cost-effective manufacturing process for the fabrication of dense metal of complex structural forms.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11721303, 11821303, 11825303, 11873029, 11890693, 11973033, 11991052, 12025303, 12033004, 12041301, 12121003, 12133008, 12173018, 12192220, 12192223, 12221003, 12233001, 12233005, 12273010, 12273030, 12273057, 12011540375, and U1931140)the China Manned Space Project (Grant Nos. CMS-CSST-2021-A04, CMS-CSST-2021-A06, CMS-CSST-2021-A10, and CMS-CSST-2021-B02)+5 种基金the Ministry of Science and Technology of China through its National Key R&D Program (Grant No. 2018YFA0404502)the National SKA Program of China (Grant No. 2020SKA0120300)the National Key Research and Development Program of China (Grant No. 2022YFA1602903)the Outstanding Young and Middle-aged Science and Technology Innovation Teams from Hubei colleges and universities (Grant No. T2021026)the Young Top-notch Talent Cultivation Program of Hubei Province, the National Science Foundation (Grant Nos. AST-2107735, and AST-2219686)NASA (Grant No. 80NSSC22K0668)。
文摘The Hot Universe Baryon Surveyor(HUBS) is a proposed space-based X-ray telescope for detecting X-ray emissions from the hot gas content in our universe. With its unprecedented spatially-resolved high-resolution spectroscopy and large field of view,the HUBS mission will be uniquely qualified to measure the physical and chemical properties of the hot gas in the interstellar medium, the circumgalactic medium, the intergalactic medium, and the intracluster medium. These measurements will be valuable for two key scientific goals of HUBS, namely to unravel the AGN and stellar feedback physics that governs the formation and evolution of galaxies, and to probe the baryon budget and multi-phase states from galactic to cosmological scales. In addition to these two goals, the HUBS mission will also help us solve some problems in the fields of galaxy clusters, AGNs, difuse X-ray backgrounds, supernova remnants, and compact objects. This paper discusses the perspective of advancing these fields using the HUBS telescope.
基金supported by the Australian Research Council Centre of Excellence Project in Optical Microcombs for Breakthrough Science(No.CE230100006)the Australian Research Council Discovery Projects Programs(DP190103186,FT210100806)+5 种基金Linkage Program(LP210200345)the Swinburne ECR-SUPRA program,the Industrial Transformation Training Centers scheme(Grant No.IC180100005)the Beijing Natural Science Foundation(No.Z180007)the Agence Nationale de la Recherche(ANR)(Grant No.MIRSiCOMB,ANR-17-CE24-0028)the H2020 European Research Council(ERC)(Grant No.GRAPHICS,648546)supported by the International Associated Laboratory in Photonics between France and Australia(LIA ALPhFA).
文摘Optical parametric amplification(OPA)represents a powerful solution to achieve broadband amplification in wavelength ranges beyond the scope of conventional gain media,for generating high-power optical pulses,optical microcombs,entangled photon pairs and a wide range of other applications.Here,we demonstrate optical parametric amplifiers based on silicon nitride(Si3N4)waveguides integrated with two-dimensional(2D)layered graphene oxide(GO)films.We achieve precise control over the thickness,length,and position of the GO films using a transfer-free,layer-by-layer coating method combined with accurate window opening in the chip cladding using photolithography.Detailed OPA measurements with a pulsed pump for the fabricated devices with different GO film thicknesses and lengths show a maximum parametric gain of~24.0 dB,representing a~12.2 dB improvement relative to the device without GO.We perform a theoretical analysis of the device performance,achieving good agreement with experiment and showing that there is substantial room for further improvement.This work represents the first demonstration of integrating 2D materials on chips to enhance the OPA performance,providing a new way of achieving high performance photonic integrated OPA by incorporating 2D materials.
基金supported in part by the National Natural Science Foundation of China(11927805)China National Space Administration(CNSA)through a technology development grant。
文摘Great strides have been made towards our understanding of the Universe over the past few decades.Surprisingly,only roughly 5%of what the Universe is made of is in the form of matter that is composed of the elements in the periodic table.The other 95% is,at present,completely unknown,and is conveniently referred to as dark matter and dark energy,which certainly represents new physics at work(see,e.g.,Ref.[1]for a review).
文摘Selectively electrochemical conversion of CO2 into organic fuel using renewable electricity is one of the most sought-after processes.In this paper,we report the electrochemical reduction of CO2(CO2RR)on the nanoporous Ag electrodes made of compacted Ag nanoparticles(AgNPs),which were prepared by one-step reduction in the water phase with or without the surfactant sodium dodecyl sulfate(SDS).The scanning electron microscope(SEM)characterizations show that the compacted Ag electrodes have the nanoporous morphology formed by stacking AgNPs.Compared with the nanoporous Ag electrode without SDS modification(C-AgNPs),the SDS-modified AgNPs electrode(C-AgNPs-SDS)is highly effective in improving selective CO production in a wide range of potentials(-0.69 V--1.19 V,vs.RHE),with a Faradaic efficiency of 92.2% and a current density of -8.23 mA·cm^-2 for CO production at -0.79 V(vs.RHE).C-AgNPs-SDS is also catalytically stable with only less than 7% deactivation after 8 h of continuous electrolysis.