Cognitive decline has been linked to periodontitis through an undetermined pathophysiological mechanism.This study aimed to explore the mechanism underlying periodontitis-related cognitive decline and identify therape...Cognitive decline has been linked to periodontitis through an undetermined pathophysiological mechanism.This study aimed to explore the mechanism underlying periodontitis-related cognitive decline and identify therapeutic strategies for this condition.Using single-nucleus RNA sequencing we found that changes in astrocyte number,gene expression,and cell‒cell communication were associated with cognitive decline in mice with periodontitis.In addition,activation of the NOD-like receptor family pyrin domain containing 3(NLRP3)inflammasome was observed to decrease the phagocytic capability of macrophages and reprogram macrophages to a more proinflammatory state in the gingiva,thus aggravating periodontitis.To further investigate this finding,lipid-based nanoparticles carrying NLRP3 siRNA(NPsiNLRP3)were used to inhibit overactivation of the NLRP3 inflammasome in gingival macrophages,restoring the oral microbiome and reducing periodontal inflammation.Furthermore,gingival injection of NPsiNLRP3 reduced the number of Serpina3nhigh astrocytes in the hippocampus and prevented cognitive decline.This study provides a functional basis for the mechanism by which the destruction of periodontal tissues can worsen cognitive decline and identifies nanoparticle-mediated restoration of gingival macrophage function as a novel treatment for periodontitis-related cognitive decline.展开更多
The gingiva is a key oral barrier that protects oral tissues from various stimuli.A loss of gingival tissue homeostasis causes periodontitis,one of the most prevalent inflammatory diseases in humans.The human gingiva ...The gingiva is a key oral barrier that protects oral tissues from various stimuli.A loss of gingival tissue homeostasis causes periodontitis,one of the most prevalent inflammatory diseases in humans.The human gingiva exists as a complex cell network comprising specialized structures.To understand the tissue-specific pathophysiology of the gingiva,we applied a recently developed spatial enhanced resolution omics-sequencing(Stereo-seq)technique to obtain a spatial transcriptome(ST)atlas of the gingiva in healthy individuals and periodontitis patients.By utilizing Stereo-seq,we identified the major cell types present in the gingiva,which included epithelial cells,fibroblasts,endothelial cells,and immune cells,as well as subgroups of epithelial cells and immune cells.We further observed that inflammation-related signalling pathways,such as the JAK-STAT and NF-κB signalling pathways,were significantly upregulated in the endothelial cells of the gingiva of periodontitis patients compared with those of healthy individuals.Additionally,we characterized the spatial distribution of periodontitis risk genes in the gingiva and found that the expression of IFI16 was significantly increased in endothelial cells of inflamed gingiva.In conclusion,our Stereo-seq findings may facilitate the development of innovative therapeutic strategies for periodontitis by mapping periodontitis-relevant genes and pathways and effector cells.展开更多
基金This work was supported by the National Key Research and Development Program of China(2021YFB3800800)the National Natural Science Foundation of China(82201011,32022041,U22A200521,U22A20157,81873713)+1 种基金the Key Research and Development Program of Guangzhou(202007020002)the Postdoctoral Foundation of China(2021M703695,2021TQ0308).
文摘Cognitive decline has been linked to periodontitis through an undetermined pathophysiological mechanism.This study aimed to explore the mechanism underlying periodontitis-related cognitive decline and identify therapeutic strategies for this condition.Using single-nucleus RNA sequencing we found that changes in astrocyte number,gene expression,and cell‒cell communication were associated with cognitive decline in mice with periodontitis.In addition,activation of the NOD-like receptor family pyrin domain containing 3(NLRP3)inflammasome was observed to decrease the phagocytic capability of macrophages and reprogram macrophages to a more proinflammatory state in the gingiva,thus aggravating periodontitis.To further investigate this finding,lipid-based nanoparticles carrying NLRP3 siRNA(NPsiNLRP3)were used to inhibit overactivation of the NLRP3 inflammasome in gingival macrophages,restoring the oral microbiome and reducing periodontal inflammation.Furthermore,gingival injection of NPsiNLRP3 reduced the number of Serpina3nhigh astrocytes in the hippocampus and prevented cognitive decline.This study provides a functional basis for the mechanism by which the destruction of periodontal tissues can worsen cognitive decline and identifies nanoparticle-mediated restoration of gingival macrophage function as a novel treatment for periodontitis-related cognitive decline.
基金supported by the National Natural Science Foundation of China(82201011,82030031,92149301 and 82270945)the Beijing Municipal Government grant(Beijing Laboratory of Oral Health,PXM2021-014226-000041)+2 种基金the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences(2019-I2M-5-038)the Science and Technology Project of Guangzhou,China(202206080009)the Postdoctoral Foundation of China(2021M703695 and 2021TQ0308)。
文摘The gingiva is a key oral barrier that protects oral tissues from various stimuli.A loss of gingival tissue homeostasis causes periodontitis,one of the most prevalent inflammatory diseases in humans.The human gingiva exists as a complex cell network comprising specialized structures.To understand the tissue-specific pathophysiology of the gingiva,we applied a recently developed spatial enhanced resolution omics-sequencing(Stereo-seq)technique to obtain a spatial transcriptome(ST)atlas of the gingiva in healthy individuals and periodontitis patients.By utilizing Stereo-seq,we identified the major cell types present in the gingiva,which included epithelial cells,fibroblasts,endothelial cells,and immune cells,as well as subgroups of epithelial cells and immune cells.We further observed that inflammation-related signalling pathways,such as the JAK-STAT and NF-κB signalling pathways,were significantly upregulated in the endothelial cells of the gingiva of periodontitis patients compared with those of healthy individuals.Additionally,we characterized the spatial distribution of periodontitis risk genes in the gingiva and found that the expression of IFI16 was significantly increased in endothelial cells of inflamed gingiva.In conclusion,our Stereo-seq findings may facilitate the development of innovative therapeutic strategies for periodontitis by mapping periodontitis-relevant genes and pathways and effector cells.