Smart fabrics have made remarkable progress in the field of wearable electronics because of their unique structure,flexibility and breathability,which are highly desirable with integrated multifunctionality.Here,a sup...Smart fabrics have made remarkable progress in the field of wearable electronics because of their unique structure,flexibility and breathability,which are highly desirable with integrated multifunctionality.Here,a superhydrophobic smart fabric has been fabricated by decorating conductive MXene on nylon fabric modified by polydopamine(PDA),followed by spraying hydrophobic materials(SiO_(2) and FOTS).The hydrophobic layer not only provides the fabric with superhydrophobicity,but also protects MXene from oxidation.Highly conductive MXene-wrapped fibers endow the fabric with adjustable conductivity and many satisfactory functions.Commendably,the smart fabric possesses sensing performances of ultralow detection limit(0.2%strain),fast response time(60 ms),short recovery time(90 ms),and outstanding sensing stability(5000 cycles).These sensing performances allow the smart fabric to accurately detect body respiratory signals in the running state,exercise state and sleep state,thus keeping track of respiratory health information.Moreover,the smart fabric also exhibits outstanding EMI shielding effectiveness(66.5 dB)in the X-band,satisfactory photothermal performance(68.6℃at 100 mW/cm2),and excellent electrothermal conversion capability(up to 102.3℃at 8 V).Therefore,the smart fabric is extremely promising for applications in EMI shielding,thermal management,and respiratory monitoring,and is an ideal candidate for smart clothing and as a medical diagnostic tool.展开更多
A large of energy consumption is required for indoor and outdoor personal heating to ameliorate the comfortable and healthy conditions.Main personal thermal management strategy is to reflect mid-infrared human body ra...A large of energy consumption is required for indoor and outdoor personal heating to ameliorate the comfortable and healthy conditions.Main personal thermal management strategy is to reflect mid-infrared human body radiation for human surface temperature(THS)regulation.We demonstrate a visible Janus light absorbent/reflective air-layer fabric(Janus A/R fabric)that can passively reflect radiative heating meanwhile can actively capture the solar energy.A series of azobenzene derivatives functionalized with alkyl tails are reported to co-harvest the solar and phase-change energy.The THS covered by Janus A/R fabric can be heated up to~3.7°C higher than that covered by air-layer fabric in cold environment(5°C).Besides,integrating the thermo-and photo-chromic properties is capable of monitoring comfort THS and residue energy storage enthalpy,respectively.According to the colour monitors,intermittent irradiation approach is proposed to prolong comfortable-THS holding time for managing energy efficiently.展开更多
基金the National Natural Science Foundation of China(21975107)China Scholarship Council(no.202206790046).
文摘Smart fabrics have made remarkable progress in the field of wearable electronics because of their unique structure,flexibility and breathability,which are highly desirable with integrated multifunctionality.Here,a superhydrophobic smart fabric has been fabricated by decorating conductive MXene on nylon fabric modified by polydopamine(PDA),followed by spraying hydrophobic materials(SiO_(2) and FOTS).The hydrophobic layer not only provides the fabric with superhydrophobicity,but also protects MXene from oxidation.Highly conductive MXene-wrapped fibers endow the fabric with adjustable conductivity and many satisfactory functions.Commendably,the smart fabric possesses sensing performances of ultralow detection limit(0.2%strain),fast response time(60 ms),short recovery time(90 ms),and outstanding sensing stability(5000 cycles).These sensing performances allow the smart fabric to accurately detect body respiratory signals in the running state,exercise state and sleep state,thus keeping track of respiratory health information.Moreover,the smart fabric also exhibits outstanding EMI shielding effectiveness(66.5 dB)in the X-band,satisfactory photothermal performance(68.6℃at 100 mW/cm2),and excellent electrothermal conversion capability(up to 102.3℃at 8 V).Therefore,the smart fabric is extremely promising for applications in EMI shielding,thermal management,and respiratory monitoring,and is an ideal candidate for smart clothing and as a medical diagnostic tool.
基金support of National Natural Science Foundation of China(21975107)Natural Science Foundation of Jiangsu Province(SBK2019020945)+2 种基金National First-Class Discipline Program of Light Industry Technology and Engineering(LITE2018-21)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX20_1783)China Scholarship Council(202006790096).
文摘A large of energy consumption is required for indoor and outdoor personal heating to ameliorate the comfortable and healthy conditions.Main personal thermal management strategy is to reflect mid-infrared human body radiation for human surface temperature(THS)regulation.We demonstrate a visible Janus light absorbent/reflective air-layer fabric(Janus A/R fabric)that can passively reflect radiative heating meanwhile can actively capture the solar energy.A series of azobenzene derivatives functionalized with alkyl tails are reported to co-harvest the solar and phase-change energy.The THS covered by Janus A/R fabric can be heated up to~3.7°C higher than that covered by air-layer fabric in cold environment(5°C).Besides,integrating the thermo-and photo-chromic properties is capable of monitoring comfort THS and residue energy storage enthalpy,respectively.According to the colour monitors,intermittent irradiation approach is proposed to prolong comfortable-THS holding time for managing energy efficiently.