The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge wit...The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge with coal–water slurry(CWS)and generate resourceful fuel.In this study,a novel five-nozzle gasifier reactor was analyzed by means of a CFD(Computational fluid dynamic)method.Among several influential factors,special attention was paid to the height-to-diameter ratio of the gasifier and the mixing ratio of oil sludge,which are known to have a significant impact on the flow field,temperature distribution and gasifier performances.According to the numerical results,the optimal height-to-diameter ratio and oil mixing ratio are about 2.4:1 and 20%,respectively.Furthermore,the carbon conversion rate can become as high as 98.55%with the hydrolysis rate reaching a value of 53.88%.The consumption of raw coal and oxygen is generally reduced,while the effective gas production is increased to 50.93 mol/%.展开更多
In this paper,based on Fluent software,a five-nozzle gasifier reactor was established to simulate the gasification process of oil-based drill cuttings coal-water slurry.The influence of concentration and oxygen/carbon...In this paper,based on Fluent software,a five-nozzle gasifier reactor was established to simulate the gasification process of oil-based drill cuttings coal-water slurry.The influence of concentration and oxygen/carbon atomic ratio on the gasification process of oil-based drill cuttings coal-water slurry was investigated.The results show that when the oxygen flow is constant,the outlet temperature of gasifier decreases,the content of effective gas increases,and the carbon conversion rate decreases with the increase of concentration;When the ratio of oxygen to carbon atoms is constant,the effective gas content rises and the temperature rises with the increase of the concentration,and the carbon conversion rate reaches the maximum value when the concentration of oil-based drill cuttings coal-water slurry is 65%;When the concentration is constant,the effective gas content decreases and the outlet temperature rises with the increase of the oxygen/carbon atom ratio,and the carbon conversion rate reaches 99.80%when the oxygen/carbon atom ratio is 1.03.It shows that this method can effectively decompose the organic matter in oilbased drill cuttings and realize the efficient and cooperative treatment of oil-based drill cuttings.展开更多
Hot Dry Rock(HDR)is the most potential renewable geothermal energy in the future.Enhanced Geothermal System(EGS)is the most effective method for the development and utilization of HDR resources,and fractures are the m...Hot Dry Rock(HDR)is the most potential renewable geothermal energy in the future.Enhanced Geothermal System(EGS)is the most effective method for the development and utilization of HDR resources,and fractures are the main flow channels and one of the most important conditions for studying heat transfer process of EGS.Therefore,the heat transfer process and the heat transfer mechanism in fractures of EGS have been the hot spots of research.Due to the particularity of the mathematical models of heat transfer,research in this field has been at an exploratory stage,and its methods are mainly experimental tests and numerical simulations.This paper introduces the progress on heat transfer in fractures of Hot Dry Rock EGS in detail,provides a comparative analysis of the research results and prospects for future research directions:It is suggested that relevant scholars should further study the mathematical equations which are applicable to engineering construction of seepage heat transfer in irregular fractures of the rock mass,the unsteady heat transfer process between multiple fractures of the rock mass and the heat transfer mechanism of the complex three-dimensional models of EGS.展开更多
Fluorinated Organic Compounds(FOCs)are commonly used as modifiers for Aluminum(Al)powder to improve its ignition,combustion,and agglomeration characteristics.However,the effects of FOCs on combustion and inhibition me...Fluorinated Organic Compounds(FOCs)are commonly used as modifiers for Aluminum(Al)powder to improve its ignition,combustion,and agglomeration characteristics.However,the effects of FOCs on combustion and inhibition mechanisms of agglomeration of Al powder are not well understood.In this paper,based on the experimental study of Fluorinated Graphite(FG)-modified Al matrix composite particles,the combustion and aggregation inhibition mechanisms of FOCs on Al particles were studied by the quantum chemical calculation at B3LYP/6-311+G(d,P)and G3//B3LYP/6-311+G(d,p)levels.The flame behavior and single particle burning behavior of FG-modified samples were compared through ignition experiments,and the characteristic spectra of Al related oxides of different samples in the initial ignition stage were captured.It is found that FG increases the burning intensity of Al composite samples significantly,while it decreases the emission intensity of Al secondary oxides.Quantum chemical calculation results show that the thermal decomposition intermediates of FOCs,namely C_(2)F_(4),can react with AlO and Al_(2)O,which weakens the characteristic emission intensity of AlO and Al_(2)O in the sample,and thus inhibits the formation of Al_(2)O_(3)in the combustion process.These results contribute to enriching the combustion dynamics model of Al-FOCs reaction system.展开更多
Boron has a promising application in the field of propellants due to its high calorific value.However,the difficulty of ignition and the poor combustion efficiency of boron(B)have severely limited its efficient applic...Boron has a promising application in the field of propellants due to its high calorific value.However,the difficulty of ignition and the poor combustion efficiency of boron(B)have severely limited its efficient application.In response to this issue,this paper proposes to improve the ignition and combustion performance of micron-sized boron by the Polyvinylidene Fluoride(PVDF)coating.The effect of PVDF content on the B combustion performance was systematically studied using a Thermogravimetry-Differential Scanning Calorimetry(TG-DSC),a Transmission Electron Microscope(TEM),an X-Ray Diffractometer(XRD),a laser Particle Size Analyzer(PSA),and a high-speed camera.The results show that PVDF can significantly reduce the initial oxidation temperature of B powder and increase its reaction heat.When the PVDF content is 23wt%,the reaction heat and the combustion intensity of B powder reach the maximum and are significantly higher than those of the uncoated B powder.Moreover,the fluorination reaction that occurs during the combustion process not only can effectively shorten the combustion time of B powder,but also has a positive effect on its flame intensity and propagation speed,and it significantly reduces B particle agglomeration,which improves the combustion efficiency significantly.This study lays the foundation for the application of PVDF modified B in B-based solid propellants.展开更多
This paper presents how the combustion performance of nano-sized aluminum(nAl)powder in carbon dioxide are affected by silica. The ignition and combustion performance of nAl powder with silica addition were studied by...This paper presents how the combustion performance of nano-sized aluminum(nAl)powder in carbon dioxide are affected by silica. The ignition and combustion performance of nAl powder with silica addition were studied by a high-temperature tube furnace. An s-type thermocouple and a high-speed motion acquisition instrument were performed to evaluate the ignition temperature, maximum combustion temperature, maximum change of rate of temperature, and combustion propagation speed. The combustion efficiency and combustion products were measured and analyzed by a gas-volumetric method and an X-ray diffraction. The results show that silica added into nAl powder can enhance its maximum combustion temperature and maximum change of rate of temperature, while its ignition temperature increases slightly. The nAl powders with addition of 6.00 wt.% and 12.00 wt.% silica present high combustion propagation speeds, especially for the latter, it has high combustion efficiency. The effect mechanism of silica on the combustion of nAl powder in carbon dioxide was discussed.展开更多
基金Enterprise Horizontal Project(Project Contract No.2021K2450)Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(SJCX22_1437).
文摘The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge with coal–water slurry(CWS)and generate resourceful fuel.In this study,a novel five-nozzle gasifier reactor was analyzed by means of a CFD(Computational fluid dynamic)method.Among several influential factors,special attention was paid to the height-to-diameter ratio of the gasifier and the mixing ratio of oil sludge,which are known to have a significant impact on the flow field,temperature distribution and gasifier performances.According to the numerical results,the optimal height-to-diameter ratio and oil mixing ratio are about 2.4:1 and 20%,respectively.Furthermore,the carbon conversion rate can become as high as 98.55%with the hydrolysis rate reaching a value of 53.88%.The consumption of raw coal and oxygen is generally reduced,while the effective gas production is increased to 50.93 mol/%.
基金This research was funded by the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(KYCX21_2815).
文摘In this paper,based on Fluent software,a five-nozzle gasifier reactor was established to simulate the gasification process of oil-based drill cuttings coal-water slurry.The influence of concentration and oxygen/carbon atomic ratio on the gasification process of oil-based drill cuttings coal-water slurry was investigated.The results show that when the oxygen flow is constant,the outlet temperature of gasifier decreases,the content of effective gas increases,and the carbon conversion rate decreases with the increase of concentration;When the ratio of oxygen to carbon atoms is constant,the effective gas content rises and the temperature rises with the increase of the concentration,and the carbon conversion rate reaches the maximum value when the concentration of oil-based drill cuttings coal-water slurry is 65%;When the concentration is constant,the effective gas content decreases and the outlet temperature rises with the increase of the oxygen/carbon atom ratio,and the carbon conversion rate reaches 99.80%when the oxygen/carbon atom ratio is 1.03.It shows that this method can effectively decompose the organic matter in oilbased drill cuttings and realize the efficient and cooperative treatment of oil-based drill cuttings.
基金provided by the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Project No.SJCX20_0984).
文摘Hot Dry Rock(HDR)is the most potential renewable geothermal energy in the future.Enhanced Geothermal System(EGS)is the most effective method for the development and utilization of HDR resources,and fractures are the main flow channels and one of the most important conditions for studying heat transfer process of EGS.Therefore,the heat transfer process and the heat transfer mechanism in fractures of EGS have been the hot spots of research.Due to the particularity of the mathematical models of heat transfer,research in this field has been at an exploratory stage,and its methods are mainly experimental tests and numerical simulations.This paper introduces the progress on heat transfer in fractures of Hot Dry Rock EGS in detail,provides a comparative analysis of the research results and prospects for future research directions:It is suggested that relevant scholars should further study the mathematical equations which are applicable to engineering construction of seepage heat transfer in irregular fractures of the rock mass,the unsteady heat transfer process between multiple fractures of the rock mass and the heat transfer mechanism of the complex three-dimensional models of EGS.
基金the financial support provided by the National Natural Science Foundation of China(Nos.52176099 and 51376007)。
文摘Fluorinated Organic Compounds(FOCs)are commonly used as modifiers for Aluminum(Al)powder to improve its ignition,combustion,and agglomeration characteristics.However,the effects of FOCs on combustion and inhibition mechanisms of agglomeration of Al powder are not well understood.In this paper,based on the experimental study of Fluorinated Graphite(FG)-modified Al matrix composite particles,the combustion and aggregation inhibition mechanisms of FOCs on Al particles were studied by the quantum chemical calculation at B3LYP/6-311+G(d,P)and G3//B3LYP/6-311+G(d,p)levels.The flame behavior and single particle burning behavior of FG-modified samples were compared through ignition experiments,and the characteristic spectra of Al related oxides of different samples in the initial ignition stage were captured.It is found that FG increases the burning intensity of Al composite samples significantly,while it decreases the emission intensity of Al secondary oxides.Quantum chemical calculation results show that the thermal decomposition intermediates of FOCs,namely C_(2)F_(4),can react with AlO and Al_(2)O,which weakens the characteristic emission intensity of AlO and Al_(2)O in the sample,and thus inhibits the formation of Al_(2)O_(3)in the combustion process.These results contribute to enriching the combustion dynamics model of Al-FOCs reaction system.
基金financial support provided by the National Natural Science Foundation of China (No.52376093)the Project of Jiangsu Graduate Practice Innovation,China (Nos. SJCX22_1435 and SJCX22_1436)sponsored by Qing Lan Project of Jiangsu Province,China.
文摘Boron has a promising application in the field of propellants due to its high calorific value.However,the difficulty of ignition and the poor combustion efficiency of boron(B)have severely limited its efficient application.In response to this issue,this paper proposes to improve the ignition and combustion performance of micron-sized boron by the Polyvinylidene Fluoride(PVDF)coating.The effect of PVDF content on the B combustion performance was systematically studied using a Thermogravimetry-Differential Scanning Calorimetry(TG-DSC),a Transmission Electron Microscope(TEM),an X-Ray Diffractometer(XRD),a laser Particle Size Analyzer(PSA),and a high-speed camera.The results show that PVDF can significantly reduce the initial oxidation temperature of B powder and increase its reaction heat.When the PVDF content is 23wt%,the reaction heat and the combustion intensity of B powder reach the maximum and are significantly higher than those of the uncoated B powder.Moreover,the fluorination reaction that occurs during the combustion process not only can effectively shorten the combustion time of B powder,but also has a positive effect on its flame intensity and propagation speed,and it significantly reduces B particle agglomeration,which improves the combustion efficiency significantly.This study lays the foundation for the application of PVDF modified B in B-based solid propellants.
基金supported by the National Natural Science Foundation of China(Nos.52176099,51376007 and 51806001)the Project of Jiangsu Provincial Six Talent Peak,China(No.JNHB-097)。
文摘This paper presents how the combustion performance of nano-sized aluminum(nAl)powder in carbon dioxide are affected by silica. The ignition and combustion performance of nAl powder with silica addition were studied by a high-temperature tube furnace. An s-type thermocouple and a high-speed motion acquisition instrument were performed to evaluate the ignition temperature, maximum combustion temperature, maximum change of rate of temperature, and combustion propagation speed. The combustion efficiency and combustion products were measured and analyzed by a gas-volumetric method and an X-ray diffraction. The results show that silica added into nAl powder can enhance its maximum combustion temperature and maximum change of rate of temperature, while its ignition temperature increases slightly. The nAl powders with addition of 6.00 wt.% and 12.00 wt.% silica present high combustion propagation speeds, especially for the latter, it has high combustion efficiency. The effect mechanism of silica on the combustion of nAl powder in carbon dioxide was discussed.