Red phosphorus has been well-recognized as promising anode materials for lithium-ion batteries(LIBs)and potassium-ion batteries(PIBs)due to its extremely high theoretical capacity and low cost.However,the huge volume ...Red phosphorus has been well-recognized as promising anode materials for lithium-ion batteries(LIBs)and potassium-ion batteries(PIBs)due to its extremely high theoretical capacity and low cost.However,the huge volume change and poor electric conductivity severely limit its further practical application.Herein,the nanoscale ultrafine red phosphorus has been successfully confined in a three-dimensional pitch-based porous carbon skeleton composed of well-interconnected carbon nanosheets through the vaporization-condensation method.Except for the traditional requirement of high electric conductivity and stable mechanical stability,the micropores and small mesopores in the porous carbon matrix centered at 1 to 3 nm and the abundant amount of oxygen-containing functional groups are also beneficial for the high loading and dispersion of red phosphorus.As anode for LIBs,the composite exhibits high reversible discharge capacities of 968 mAh g^(-1),excellent rate capabilities of 593 mAh g^(-1)at 2 A g^(-1),and long cycle performance of 557 mAh g^(-1)at 2 A g^(-1).More impressively,as the anode for PIBs,the composite presents a high reversible capacity of 661 mAh g^(-1)and a stable capacity of 312 mAh g^(-1)at 0.5 A g^(-1)for 500 cycles with a capacity retention up to 84.3%.This work not only sheds light on the structure design of carbon hosts with specific pore structure but also open an avenue for high value-added utilization of coal tar pitch.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52071171,52202248,22208138)Natural Science Foundation of Liaoning Province(2020-MS-137,2023-MS-140)+7 种基金Doctoral Start-up Foundation of Liaoning Province,China(2020-BS-081)Australian Research Council(ARC)through Future Fellowship(FT210100298,FT210100806)Discovery Project(DP220100603)Linkage Project(LP210100467,LP210200504,LP210200345,LP220100088)Industrial Transformation Training center(IC180100005)schemesCSIRO Energy center and Kick-Start Project,and the Australian Government through the Cooperative Research Centres Projects(CRCPXIII000077)Young Scientific Project of the Department of Education of Liaoning Province(LJKQZ20222263,LQN202008)Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization,Anhui University of Technology(CHV22-05).
文摘Red phosphorus has been well-recognized as promising anode materials for lithium-ion batteries(LIBs)and potassium-ion batteries(PIBs)due to its extremely high theoretical capacity and low cost.However,the huge volume change and poor electric conductivity severely limit its further practical application.Herein,the nanoscale ultrafine red phosphorus has been successfully confined in a three-dimensional pitch-based porous carbon skeleton composed of well-interconnected carbon nanosheets through the vaporization-condensation method.Except for the traditional requirement of high electric conductivity and stable mechanical stability,the micropores and small mesopores in the porous carbon matrix centered at 1 to 3 nm and the abundant amount of oxygen-containing functional groups are also beneficial for the high loading and dispersion of red phosphorus.As anode for LIBs,the composite exhibits high reversible discharge capacities of 968 mAh g^(-1),excellent rate capabilities of 593 mAh g^(-1)at 2 A g^(-1),and long cycle performance of 557 mAh g^(-1)at 2 A g^(-1).More impressively,as the anode for PIBs,the composite presents a high reversible capacity of 661 mAh g^(-1)and a stable capacity of 312 mAh g^(-1)at 0.5 A g^(-1)for 500 cycles with a capacity retention up to 84.3%.This work not only sheds light on the structure design of carbon hosts with specific pore structure but also open an avenue for high value-added utilization of coal tar pitch.
基金supported in part by the National Natural Science Foundation of China (Grant Nos.61375063,51478049, 61773404and 11301549)in part by the Major Scientific and Technological Special Program of Hunan Province,China (2015GK1001-1).