Clustering is one of the most widely used techniques for exploratory data analysis. Spectral clustering algorithm, a popular modern cluslering algorithm, has been shown to be more effective in detecting clusters than ...Clustering is one of the most widely used techniques for exploratory data analysis. Spectral clustering algorithm, a popular modern cluslering algorithm, has been shown to be more effective in detecting clusters than many traditional algorithms. It has applications ranging from computer vision and information retrieval to social sienee and biology. With the size of databases soaring, cluostering algorithms bare saling computational time and memory use. In this paper, we propose a parallel spectral elustering implementation based on MapRednee. Both the computation and data storage are dislributed, which solves the sealability problems for most existing algorithms. We empirically analyze the proposed implementation on both benchmark net- works and a real social network dataset of about two million vertices and two billion edges crawled from Sina Weibo. It is shown that the proposed implementation scales well, speeds up the clustering without sacrificing quality, and processes massive datasets efficiently on commodity machine clusters.展开更多
Modelling,predicting and analysing driver behaviours are essential to advanced driver assistance systems(ADAS)and the comprehensive understanding of complex driving scenarios.Recently,with the development of deep lear...Modelling,predicting and analysing driver behaviours are essential to advanced driver assistance systems(ADAS)and the comprehensive understanding of complex driving scenarios.Recently,with the development of deep learning(DL),numerous driver behaviour learning(DBL)methods have been proposed and applied in connected vehicles(CV)and intelligent transportation systems(ITS).This study provides a review of DBL,which mainly focuses on typical applications in CV and ITS.First,a comprehensive review of the state-of-the-art DBL is presented.Next,Given the constantly changing nature of real driving scenarios,most existing learning-based models may suffer from the so-called“catastrophic forgetting,”which refers to their inability to perform well in previously learned scenarios after acquiring new ones.As a solution to the aforementioned issue,this paper presents a framework for continual driver behaviour learning(CDBL)by leveraging continual learning technology.The proposed CDBL framework is demonstrated to outperform existing methods in behaviour prediction through a case study.Finally,future works,potential challenges and emerging trends in this area are highlighted.展开更多
文摘Clustering is one of the most widely used techniques for exploratory data analysis. Spectral clustering algorithm, a popular modern cluslering algorithm, has been shown to be more effective in detecting clusters than many traditional algorithms. It has applications ranging from computer vision and information retrieval to social sienee and biology. With the size of databases soaring, cluostering algorithms bare saling computational time and memory use. In this paper, we propose a parallel spectral elustering implementation based on MapRednee. Both the computation and data storage are dislributed, which solves the sealability problems for most existing algorithms. We empirically analyze the proposed implementation on both benchmark net- works and a real social network dataset of about two million vertices and two billion edges crawled from Sina Weibo. It is shown that the proposed implementation scales well, speeds up the clustering without sacrificing quality, and processes massive datasets efficiently on commodity machine clusters.
基金Supported by the National Key Research and Development Program of China(No.2022ZD0115503).
文摘Modelling,predicting and analysing driver behaviours are essential to advanced driver assistance systems(ADAS)and the comprehensive understanding of complex driving scenarios.Recently,with the development of deep learning(DL),numerous driver behaviour learning(DBL)methods have been proposed and applied in connected vehicles(CV)and intelligent transportation systems(ITS).This study provides a review of DBL,which mainly focuses on typical applications in CV and ITS.First,a comprehensive review of the state-of-the-art DBL is presented.Next,Given the constantly changing nature of real driving scenarios,most existing learning-based models may suffer from the so-called“catastrophic forgetting,”which refers to their inability to perform well in previously learned scenarios after acquiring new ones.As a solution to the aforementioned issue,this paper presents a framework for continual driver behaviour learning(CDBL)by leveraging continual learning technology.The proposed CDBL framework is demonstrated to outperform existing methods in behaviour prediction through a case study.Finally,future works,potential challenges and emerging trends in this area are highlighted.