期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
星载超广角改形Sagnac干涉仪的自推扫探测大气风场 被引量:6
1
作者 唐远河 张淳民 +3 位作者 陈光德 刘汉臣 yunlong lin 叶剑勇 《自然科学进展》 北大核心 2006年第11期1491-1495,共5页
用卫星运动的自推扫方式即入射角的变化探测上层大气风场,探测全视场达4.5°.利用自行设计的超广角改形Sagnac干涉仪光程差公式和Doppler频移导出“四强度法”探测风场的模式,通过卫星自推扫所致入射角的4个步进值,变换成卫星的4... 用卫星运动的自推扫方式即入射角的变化探测上层大气风场,探测全视场达4.5°.利用自行设计的超广角改形Sagnac干涉仪光程差公式和Doppler频移导出“四强度法”探测风场的模式,通过卫星自推扫所致入射角的4个步进值,变换成卫星的4次飞行时刻步进实现“四强度法”的风场探测.设计出超广角改形Sagnac干涉仪的结构尺寸后,通过实例论证了利用超广角改形Sagnac干涉仪,对OH(或O_2)732.0 nm极光,只要CCD照相机在9 s曝光时间内,通过卫星的4个飞行时刻3.4938,5.5848,7.3130和8.4724 s所探测的4个极光强度值,就能获得高度为600km距卫星1500km处的大气风场. 展开更多
关键词 超广角 改形Sagnac干涉仪 自推扫 上层大气风场
下载PDF
Parallel Spectral Clustering Based on MapReduce 被引量:3
2
作者 Qiwei Zhong yunlong lin +3 位作者 Junyang Zou Kuangyan Zhu Qiao Wang Lei Hu 《ZTE Communications》 2013年第2期45-50,共6页
Clustering is one of the most widely used techniques for exploratory data analysis. Spectral clustering algorithm, a popular modern cluslering algorithm, has been shown to be more effective in detecting clusters than ... Clustering is one of the most widely used techniques for exploratory data analysis. Spectral clustering algorithm, a popular modern cluslering algorithm, has been shown to be more effective in detecting clusters than many traditional algorithms. It has applications ranging from computer vision and information retrieval to social sienee and biology. With the size of databases soaring, cluostering algorithms bare saling computational time and memory use. In this paper, we propose a parallel spectral elustering implementation based on MapRednee. Both the computation and data storage are dislributed, which solves the sealability problems for most existing algorithms. We empirically analyze the proposed implementation on both benchmark net- works and a real social network dataset of about two million vertices and two billion edges crawled from Sina Weibo. It is shown that the proposed implementation scales well, speeds up the clustering without sacrificing quality, and processes massive datasets efficiently on commodity machine clusters. 展开更多
关键词 spectral clustering parallel implementation massive dataset Hadoop MapRedue data mining
下载PDF
Continual driver behaviour learning for connected vehicles and intelligent transportation systems: Framework, survey and challenges
3
作者 Zirui Li Cheng Gong +6 位作者 yunlong lin Guopeng Li Xinwei Wang Chao Lu Miao Wang Shanzhi Chen Jianwei Gong 《Green Energy and Intelligent Transportation》 2023年第4期69-80,共12页
Modelling,predicting and analysing driver behaviours are essential to advanced driver assistance systems(ADAS)and the comprehensive understanding of complex driving scenarios.Recently,with the development of deep lear... Modelling,predicting and analysing driver behaviours are essential to advanced driver assistance systems(ADAS)and the comprehensive understanding of complex driving scenarios.Recently,with the development of deep learning(DL),numerous driver behaviour learning(DBL)methods have been proposed and applied in connected vehicles(CV)and intelligent transportation systems(ITS).This study provides a review of DBL,which mainly focuses on typical applications in CV and ITS.First,a comprehensive review of the state-of-the-art DBL is presented.Next,Given the constantly changing nature of real driving scenarios,most existing learning-based models may suffer from the so-called“catastrophic forgetting,”which refers to their inability to perform well in previously learned scenarios after acquiring new ones.As a solution to the aforementioned issue,this paper presents a framework for continual driver behaviour learning(CDBL)by leveraging continual learning technology.The proposed CDBL framework is demonstrated to outperform existing methods in behaviour prediction through a case study.Finally,future works,potential challenges and emerging trends in this area are highlighted. 展开更多
关键词 Driver behaviours Connected vehicles Continual learning Machine learning Intelligent transportation systems
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部