期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Polyoxometalate derived p-n heterojunction for optimized reaction interface and improved HER
1
作者 Xiaoli Cui yunmeng sun Xinxin Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第3期494-497,共4页
MoS_(2) is a typical electrocatalyst for hydrogen evolution reaction(HER),but the HER activity is spoilt by intensive adsorption towards H^(*),which requires further improvement.For n-type MoS_(2),the construction of ... MoS_(2) is a typical electrocatalyst for hydrogen evolution reaction(HER),but the HER activity is spoilt by intensive adsorption towards H^(*),which requires further improvement.For n-type MoS_(2),the construction of p-n heterojunction with p-type MoO_(3) can reverse this situation,because inner electronic field in p-n heterojunction can facilitate H^(*) desorption.Based on this hypothesis,p-n heterojunction is built between MoS_(2) and MoO_(3) with polyoxometalate compound as precursor.The obtained MoO_(3)/MoS_(2) exhibits excellent HER activity,which only requires 68 mV to obtain 10 mA/cm^(2).With MoO_(3)/MoS_(2) as cathode material and Zn slice as anode,Zn-H^(+)battery is assembled.Its open circuit voltage achieves 1.11 V with short circuit current 151.4 mA/cm^(2).The peak power density of this Zn-H^(+) battery reaches 47.6 mW/cm^(2).When discharge at 10 mA/cm^(2),the specific capacity and energy density reach 728 mAh/g and 759 Wh/kg.In this process,H_(2) production rate of Zn-H^(+) battery achieves 364μmol/h with Faradic efficiency 97.8%.It realizes H_(2) production and electricity generation simultaneously. 展开更多
关键词 POLYOXOMETALATE p-n Heterojunction ELECTROCATALYSIS HER Zn-H~+battery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部