期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The development in aqueous lithium-ion batteries 被引量:7
1
作者 Duan Bin yunping wen +1 位作者 Yonggang Wan Yongyao Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期1521-1535,共15页
To meet the growing energy demands, it is urgent for us to construct grid-scale energy storage systemthan can connect sustainable energy resources. Aqueous Li-ion batteries (ALIBs) have been widely in-vestigated to ... To meet the growing energy demands, it is urgent for us to construct grid-scale energy storage systemthan can connect sustainable energy resources. Aqueous Li-ion batteries (ALIBs) have been widely in-vestigated to become the most promising stationary power sources for sustainable energy such as windand solar power. It is believed that advantages of ALIBs will overcome the limitations of the traditionalorganic lithium battery in virtue of the safety and environmentally friendly aqueous electrolyte. In thepast decades, plentiful works have been devoted to enhance the performance of different types of ALIBs.In this review, we discuss the development of cathode, anode and electrolyte for acquiring the desiredelectrochemical performance of ALIBs. Also. the main challenges and outlook in this field are briefly dis-cussed. 展开更多
关键词 Li-ion batteries Aqueous electrolyte CATHODE ANODE Electrochemical performance
下载PDF
High performance TiP_2O_7 nanoporous microsphere as anode material for aqueous lithium-ion batteries 被引量:3
2
作者 yunping wen Yao Liu +5 位作者 Duan Bin Zhuo Wang Congxiao Wang Yuliang Cao Xinping Ai Yongyao Xia 《Science China Chemistry》 SCIE EI CAS CSCD 2019年第1期118-125,共8页
This work developed a facile way to mass-produce a carbon-coated TiP_2O_7 nanoporous microsphere(TPO-NMS) as anode material for aqueous lithium-ion batteries via solid-phase synthesis combined with spray drying method... This work developed a facile way to mass-produce a carbon-coated TiP_2O_7 nanoporous microsphere(TPO-NMS) as anode material for aqueous lithium-ion batteries via solid-phase synthesis combined with spray drying method. TiP_2O_7 shows great prospect as anode for aqueous rechargeable lithium-ion batteries(ALIBs) in view of its appropriate intercalation potential of-0.6 V(vs. SCE) before hydrogen evolution in aqueous electrolytes. The resulting sample presents the morphology of secondary microspheres(ca. 20 μm) aggregated by carbon-coated primary nanoparticles(100 nm), in which the primary nanoparticles with uniform carbon coating and sophisticated pore structure greatly improve its electrochemical performance. Consequently, TPONMS delivers a reversible capacity of 90 mA h/g at 0.1 A/g, and displays enhanced rate performance and good cycling stability with capacity retention of 90% after 500 cycles at 0.2 A/g. A full cell containing TPO-NMS anode and LiMn_2O_4 cathode delivers a specific energy density of 63 W h/kg calculated on the total mass of anode and cathode. It also shows good rate capacity with56% capacity maintained at 10 A/g rate(vs. 0.1 A/g), as well as long cycle life with the capacity retention of 82% after 1000 cycles at 0.5 A/g. 展开更多
关键词 AQUEOUS LITHIUM-ION batteries H2 evolution reaction anode TiP2O7 spray drying
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部