A new monostatic array system taking advantage of diverse waveforms to improve the performance of underwater tar- get localization is proposed. Unlike the coherent signals between different elements in common active a...A new monostatic array system taking advantage of diverse waveforms to improve the performance of underwater tar- get localization is proposed. Unlike the coherent signals between different elements in common active array, the transmitted signals from different elements here are spatially orthogonal waveforms which allow for array processing in the transit mode and result in an extension of array aperture. The mathematical derivation of Capon estimator for this sonar system is described in detail. And the performance of this orthogonal-waveform based sonar is an- alyzed and compared with that of its phased-array counterpart by water tank experiments. Experimental results show that this sonar system could achieve 12 dB-15 dB additional array gain over its phased-array counterpart, which means a doubling of maximum detection range. Moreover, the angular resolution is significantly improved at lower SNR.展开更多
The maximum likelihood (ML) estimator demonstrates remarkable performance in direction of arrival (DOA) estimation for the multiple input multiple output (MIMO) sonar. However, this advantage comes with prohibit...The maximum likelihood (ML) estimator demonstrates remarkable performance in direction of arrival (DOA) estimation for the multiple input multiple output (MIMO) sonar. However, this advantage comes with prohibitive computational complexity. In order to solve this problem, an ant colony optimization (ACO) is incorporated into the MIMO ML DOA estimator. Based on the ACO, a novel MIMO ML DOA estimator named the MIMO ACO ML (ML DOA estimator based on ACO for MIMO sonar) with even lower computational complexity is proposed. By extending the pheromone remaining process to the pheromone Gaussian kernel probability distribution function in the continuous space, the pro- posed algorithm achieves the global optimum value of the MIMO ML DOA estimator. Simulations and experimental results show that the computational cost of MIMO ACO ML is only 1/6 of the MIMO ML algorithm, while maintaining similar performance with the MIMO ML method.展开更多
基金supported by the National Natural Science Foundation of China(60572098)
文摘A new monostatic array system taking advantage of diverse waveforms to improve the performance of underwater tar- get localization is proposed. Unlike the coherent signals between different elements in common active array, the transmitted signals from different elements here are spatially orthogonal waveforms which allow for array processing in the transit mode and result in an extension of array aperture. The mathematical derivation of Capon estimator for this sonar system is described in detail. And the performance of this orthogonal-waveform based sonar is an- alyzed and compared with that of its phased-array counterpart by water tank experiments. Experimental results show that this sonar system could achieve 12 dB-15 dB additional array gain over its phased-array counterpart, which means a doubling of maximum detection range. Moreover, the angular resolution is significantly improved at lower SNR.
基金supported by the National Natural Science Foundation of China (60972152)the National Laboratory Foundation of China (9140C2304080607)+1 种基金the Aviation Science Fund (2009ZC53031)the Doctoral Foundation of Northwestern Polytechnical University (CX201002)
文摘The maximum likelihood (ML) estimator demonstrates remarkable performance in direction of arrival (DOA) estimation for the multiple input multiple output (MIMO) sonar. However, this advantage comes with prohibitive computational complexity. In order to solve this problem, an ant colony optimization (ACO) is incorporated into the MIMO ML DOA estimator. Based on the ACO, a novel MIMO ML DOA estimator named the MIMO ACO ML (ML DOA estimator based on ACO for MIMO sonar) with even lower computational complexity is proposed. By extending the pheromone remaining process to the pheromone Gaussian kernel probability distribution function in the continuous space, the pro- posed algorithm achieves the global optimum value of the MIMO ML DOA estimator. Simulations and experimental results show that the computational cost of MIMO ACO ML is only 1/6 of the MIMO ML algorithm, while maintaining similar performance with the MIMO ML method.