Physically vitrifying amorphous single-element metal requires ultrahigh cooling rates,which are still unachievable for most of the closest-packed metals.Here,we report a facile chemical synthetic strategy for single-e...Physically vitrifying amorphous single-element metal requires ultrahigh cooling rates,which are still unachievable for most of the closest-packed metals.Here,we report a facile chemical synthetic strategy for single-element amorphous palladium nanoparticles with a purity of 99.35 at.%±0.23 at.%from palladium–silicon liquid droplets.In-situ transmission electron microscopy directly detected the solidification of palladium and the separation of silicon.Further hydrogen absorption experiment showed that the amorphous palladium expanded little upon hydrogen uptake,exhibiting a great potential application for hydrogen separation.Our results provide insight into the formation of amorphous metal at nanoscale.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51602143,51702150,11874194,11774142,and 11874194)the Science and Technology Innovation Committee Foundation of Shenzhen(Nos.KQTD2016022619565991,JCYJ20200109141205978,and ZDSYS20141118160434515)+1 种基金the Natural Science Foundation of Guangdong Province(No.2015A030308001)the Leading Talents of Guangdong Province Program(No.00201517)。
文摘Physically vitrifying amorphous single-element metal requires ultrahigh cooling rates,which are still unachievable for most of the closest-packed metals.Here,we report a facile chemical synthetic strategy for single-element amorphous palladium nanoparticles with a purity of 99.35 at.%±0.23 at.%from palladium–silicon liquid droplets.In-situ transmission electron microscopy directly detected the solidification of palladium and the separation of silicon.Further hydrogen absorption experiment showed that the amorphous palladium expanded little upon hydrogen uptake,exhibiting a great potential application for hydrogen separation.Our results provide insight into the formation of amorphous metal at nanoscale.