期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Adversarial Attacks on License Plate Recognition Systems 被引量:1
1
作者 Zhaoquan Gu Yu Su +5 位作者 Chenwei Liu Yinyu Lyu yunxiang jian Hao Li Zhen Cao Le Wang 《Computers, Materials & Continua》 SCIE EI 2020年第11期1437-1452,共16页
The license plate recognition system(LPRS)has been widely adopted in daily life due to its efficiency and high accuracy.Deep neural networks are commonly used in the LPRS to improve the recognition accuracy.However,re... The license plate recognition system(LPRS)has been widely adopted in daily life due to its efficiency and high accuracy.Deep neural networks are commonly used in the LPRS to improve the recognition accuracy.However,researchers have found that deep neural networks have their own security problems that may lead to unexpected results.Specifically,they can be easily attacked by the adversarial examples that are generated by adding small perturbations to the original images,resulting in incorrect license plate recognition.There are some classic methods to generate adversarial examples,but they cannot be adopted on LPRS directly.In this paper,we modify some classic methods to generate adversarial examples that could mislead the LPRS.We conduct extensive evaluations on the HyperLPR system and the results show that the system could be easily attacked by such adversarial examples.In addition,we show that the generated images could also attack the black-box systems;we show some examples that the Baidu LPR system also makes incorrect recognitions.We hope this paper could help improve the LPRS by realizing the existence of such adversarial attacks. 展开更多
关键词 License plate recognition system adversarial examples deep neural networks
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部