期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
One-pot In-situ Synthesis of Sn/Carbon-fibers Nanocomposite by Chemical Vapor Deposition and Its Li-storage Properties 被引量:3
1
作者 J.Xie yunxiao zheng +2 位作者 Shuangyu Liu Gaoshao Cao Xinbing Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第3期275-279,共5页
Sn/carbon-fibers(CFs) nanocomposite has been prepared by chemical vapor deposition with in-situ catalytic growth of CFs.The nanocomposite has been characterized by X-ray diffraction(XRD),field emission scanning el... Sn/carbon-fibers(CFs) nanocomposite has been prepared by chemical vapor deposition with in-situ catalytic growth of CFs.The nanocomposite has been characterized by X-ray diffraction(XRD),field emission scanning electron microscopy(FE-SEM),transmission electron microscopy(TEM) and Raman spectrum.The electrochemical performance of the nanocomposite has been investigated by galvanostatic cycling and cyclic voltammetry(CV).It has been found that a three-dimensional conductive network forms by the interconnected CFs,which offers conductive channels for the Sn nanoparticles.The nanocomposite gives a first charge capacity of 385 mAh.g-1 and exhibits an improved cycling stability than bare Sn. 展开更多
关键词 Sn/carbon-fibers In-situ catalytic growth Three-dimensional conductive network Li-storage properties
原文传递
Preparation and Li-storage properties of SnSb/graphene hybrid nanostructure by a facile one-step solvothermal route
2
作者 Jian Xie Wentao Song +4 位作者 yunxiao zheng Shuangyu Liu Tiejun Zhu Gaoshao Cao Xinbing Zhao 《International Journal of Smart and Nano Materials》 SCIE EI 2011年第4期261-271,共11页
A SnSb nanocrystal/graphene hybrid nanocomposite was synthesized by a facile one-step solvothermal route using graphite oxide,SnCl_(2).2H_(2)O and SbCl_(3) as the starting materials,absolute ethanol as the solvent,and... A SnSb nanocrystal/graphene hybrid nanocomposite was synthesized by a facile one-step solvothermal route using graphite oxide,SnCl_(2).2H_(2)O and SbCl_(3) as the starting materials,absolute ethanol as the solvent,and NaBH4 as the reductant.The formation of SnSb alloy and the reduction of the graphene oxide occur simultaneously.SnSb nanoparticles with a size of 30–40 nm were uniformly anchored and confined by the graphene sheets,forming a unique SnSb/graphene hybrid nanostructure.The electrostatic attraction between the positively charged ions(Sn^(2+) and Sb^(3+))and the negatively charged graphene oxide plays an important role in the uniform distribution of the SnSb particles on the graphene sheets.The electrochemical Li-storage properties of the nanocomposite were investigated as a potential high-capacity anode material for Li-ion batteries.The results show that the nanocomposite exhibits an obvious enhanced Li-storage performance compared with bare SnSb.The improvement of the electrochemical performance could be attributed to the formation of two-dimensional conductive networks,homogeneous dispersion and confinement of SnSb nanoparticles and the enhanced wetting of active material with the electrolyte for increased specific surface area by the introduction of graphene into SnSb nanoparticles.Li-ion chemical diffusion coefficient and ac impedance were measured to understand the underlying mechanism for the improved electrochemical performance. 展开更多
关键词 tin-antimony nanocrystal GRAPHENE hybrid nanostructure lithium storage properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部