Lanthanum magnesium hexaaluminate(LaMgAl(11)O(19), LMA) was prepared at different temperatures by solid-state reaction. Phase compositions and crystal morphologies of specimens synthesized at different temperatu...Lanthanum magnesium hexaaluminate(LaMgAl(11)O(19), LMA) was prepared at different temperatures by solid-state reaction. Phase compositions and crystal morphologies of specimens synthesized at different temperatures were investigated using X-ray diffraction(XRD), scanning electron microscopy(SEM). It was observed that the crystalline grain size of LMA was not only dependent on the preparation temperature but also on its powder morphology. In the temperature range of 1300 e1550℃, LMA showed platelet grain and the average crystalline grain size increases with the increase in temperature. At1600℃, if the powder was sintered for two times, the equiaxed grain could be found with the decrease in grain space, resulting in the reduction of the crystalline grain size. Styles of specimens(powder or disk) might have no obvious influence on morphologies and sizes of LMA crystalline grains which were synthesized with the well-dispersed raw material mixtures. The synthesis temperature played a key role in influencing the free space for the formation and growth of crystalline grains.展开更多
基金Project supported by the National Natural Science Foundation of China(51501137)National University of Defense Technology,and Wuhan University of Technology
文摘Lanthanum magnesium hexaaluminate(LaMgAl(11)O(19), LMA) was prepared at different temperatures by solid-state reaction. Phase compositions and crystal morphologies of specimens synthesized at different temperatures were investigated using X-ray diffraction(XRD), scanning electron microscopy(SEM). It was observed that the crystalline grain size of LMA was not only dependent on the preparation temperature but also on its powder morphology. In the temperature range of 1300 e1550℃, LMA showed platelet grain and the average crystalline grain size increases with the increase in temperature. At1600℃, if the powder was sintered for two times, the equiaxed grain could be found with the decrease in grain space, resulting in the reduction of the crystalline grain size. Styles of specimens(powder or disk) might have no obvious influence on morphologies and sizes of LMA crystalline grains which were synthesized with the well-dispersed raw material mixtures. The synthesis temperature played a key role in influencing the free space for the formation and growth of crystalline grains.