期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Realizing efficient electrochemical oxidation of 5-hydroxymethylfurfural on a freestanding Ni(OH)_(2)/nickel foam catalyst
1
作者 yunying huo Cong Guo +6 位作者 Yongle Zhang Jingyi Liu Qiao Zhang Zhiting Liu Guangxing Yang Rengui Li Feng Peng 《Chinese Journal of Catalysis》 SCIE CAS 2024年第8期282-291,共10页
With the continuous improvement of solar energy production capacity,how to effectively use the electricity generated by renewable solar energy for electrochemical conversion of biomass is a hot topic.Electrochemical c... With the continuous improvement of solar energy production capacity,how to effectively use the electricity generated by renewable solar energy for electrochemical conversion of biomass is a hot topic.Electrochemical conversion of 5-hydroxymethylfurfural(HMF)to biofuels and value-added oxygenated commodity chemicals provides a promising and alternative pathway to convert re-newable electricity into chemicals.Although nickel-based eletrocatalysts are well-known for HMF oxidation,their relatively low intrinsic activity,poor conductivity and stability still limit the poten-tial applications.Here,we report the fabrication of a freestanding nickel-based electrode,in which Ni(OH)2 species were in-situ constructed on Ni foam(NF)support using a facile ac-id-corrosion-induced strategy.The Ni(OH)2/NF electrocatalyst exhibits stable and efficient electro-chemical HMF oxidation into 2,5-furandicarboxylic acid(FDCA)with HMF conversion close to 100%with high Faraday efficiency.In-situ formation strategy results in a compact interface between Ni(OH)2 and NF,which contributes to good conductivity and stability during electrochemical reac-tions.The superior performance benefits from dynamic cyclic evolution of Ni(OH)2 to NiOOH,which acts as the reactive species for HMF oxidation to FDCA.A scaled-up device based on a continu-ous-flow electrolytic cell was also established,giving stable operation with a high FDCA production rate of 27 mg h^(-1)cm^(−2).This job offers a straightforward,economical,and scalable design strategy to design efficient and durable catalysts for electrochemical conversion of valuable chemicals. 展开更多
关键词 Acid-corrosion-induced 5-Hydroxymethylfurfural Electrocatalytic oxidation Ni electrocatalysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部