To reveal the geometry of the seismogenic structure of the Aug. 8, 2017 M_S 7.0 Jiuzhaigou earthquake in northern Sichuan,data from the regional seismic network from the time of the main event to Oct. 31, 2017 were us...To reveal the geometry of the seismogenic structure of the Aug. 8, 2017 M_S 7.0 Jiuzhaigou earthquake in northern Sichuan,data from the regional seismic network from the time of the main event to Oct. 31, 2017 were used to relocate the earthquake sequence by the tomoDD program, and the focal mechanism solutions and centroid depths of the M_L ≥ 3.5 events in the sequence were determined using the CAP waveform inversion method. Further, the segmental tectonic deformation characteristics of the seismogenic faults were analyzed preliminarily by using strain rosettes and areal strains(As). The results indicate:(1) The relocated M_S 7.0 Jiuzhaigou earthquake sequence displays a narrow ~ 38 km long NNW-SSE-trending zone between the NW-striking Tazang Fault and the nearly NSstriking Minjiang Fault, two branches of the East Kunlun Fault Zone. The spatial distribution of the sequence is narrow and deep for the southern segment, and relatively wide and shallow for the northern segment. The initial rupture depth of the mainshock is 12.5 km, the dominant depth range of the aftershock sequence is between 0 and 10 km with an average depth of 6.7 km. The mainshock epicenter is located in the middle of the aftershock region, showing a bilateral rupture behavior. The centroid depths of 32 M_L ≥ 3.5 events range from 3 to 12 km with a mean of about 7.3 km, consistent with the predominant focal depth of the whole sequence.(2) The geometric structure of the seismogenic fault on the southern section of the aftershock area(south of the mainshock) is relatively simple, with overall strike of ~150° and dip angle ~75°, but the dip angle and dip-orientation exhibit some variation along the segment. The seismogenic structure on the northern segment is more complicated; several faults, including the Minjiang Fault, may be responsible for the aftershock activities. The overall strike of this section is ~159° and dip angle is ~59°, illustrating a certain clockwise rotation and a smaller dip angle than the southern segment. The differences between the two segments demonstrate variation of the geometric structure along the seismogenic faults.(3) The focal mechanism solutions of 32 M_L ≥ 3.5 events in the earthquake sequence have obvious segmental characteristics. Strike-slip earthquakes are dominant on the southern segment, while 50% of events on the northern segment are thrusting and oblique thrusting earthquakes, revealing significant differences in the kinematic features of the seismogenic faults between the two segments.(4) The strain rosettes for the mainshock and the entire sequence of 31 M_L ≥ 3.5 aftershocks correspond to strike-slip type with NWW-SEE compressional white lobes and NNE-SSW extensional black lobes of nearly similar size. The strain rosette and As value of the entire sequence of 22 M_L ≥ 3.5 events on the southern segment are the same as those of the M_S 7.0 mainshock,indicating that the tectonic deformation here is strike-slip. However, the strain rosette of the entire sequence of 10 M_L ≥ 3.5 events on the northern segment show prominent white compressional lobes and small black extensional lobes, and the related As value is up to 0.52,indicating that the tectonic deformation of this segment is oblique thrusting with a certain strike-slip component. Differences between the two segments all reveal distinctly obvious segmental characteristics of the tectonic deformation of the seismogenic faults for the Jiuzhaigou earthquake sequence.展开更多
In order to understand the crustal structure and tectonic background of the Changning–Gongxiang area, southeastern Sichuan Province, where a series of moderate-to-strong earthquakes occurred in recent years, we utili...In order to understand the crustal structure and tectonic background of the Changning–Gongxiang area, southeastern Sichuan Province, where a series of moderate-to-strong earthquakes occurred in recent years, we utilized the seismic phase data both from a local dense array and from the regional seismic networks;we used the tomoDD program to invert for the high-resolution three-dimensional velocity structure within the depth range of 0–10 km and for accurate hypocentral locations in this area. We analyzed the seismogenic structures for the events of Xingwen M5.7 in 2018 and Gongxian M5.3 and Changning M6.0 in 2019. The results show that:(1) widespread lateral inhomogeneity exists in the velocity structure of the study area, and the location of the velocity anomaly is largely consistent with known structures. In the range of distinguishable depth, the inhomogeneity decreases with increasing depth, and the velocity structure anomalies in some areas are continuous in depth;(2) earthquakes occurred in clusters, showing the characteristics of zonal folding trends in the NW-SE and NE-SW directions;the focal depth in the area is generally shallow in both the sedimentary cap and the crystalline basement. The seismogenic structures of small earthquake clusters are different in size and occurrence in different sections, and the clusters occurred mostly in regions with high P-or S-wave velocities;(3) synthesis of a variety of data suggests that the seismogenic structures of the Xingwen M5.7 and Changning M6.0 earthquakes are associated with slip faults that trend NW-SE in, respectively, the south wing and the axis of the Changning–Shuanghe anticline, while that of the Gongxian M5.3 earthquake is associated with thrust faults that trend N-S in the Jianwu syncline region. The dynamic sources of the three earthquakes are all from the SE pushing of the Qinghai–Tibet block on the Sichuan basin;(4) the risk of future strong earthquakes in this area must be reevaluated in light of the facts(a)that in recent years, moderate-to-strong earthquake swarms have occurred frequently in southeast Sichuan;(b) that the complex structural area exhibits the easy-to-trigger characteristic, and(c) that the small-scale faults in this area are characterized by the phenomenon of stress "lock and release".展开更多
Cambrian carbonates with abundant fossils of agnostoid trilobites deposited on the southern slope (Jiangnan slope belt) of the Yangtze Platform and in the Jiangnan deepwater basin are well exposed in the Wangeun Sec...Cambrian carbonates with abundant fossils of agnostoid trilobites deposited on the southern slope (Jiangnan slope belt) of the Yangtze Platform and in the Jiangnan deepwater basin are well exposed in the Wangeun Section of western Hunan, South China, and in the Duibian A Section of western Zhejiang, southeastern China, respectively. To better understand the response of carbonisotope excursions to depositional environment changes, mass extinctions and eustatic events, we collected 530 carbonate samples in fresh roadcut exposures of the two measured sections for analysis of carbon and oxygen isotopic compositions. Data of δ^13C from the Wangcun Section, western Hunan, South China, demonstrate that the Cambrian carbon-isotope profile includes three remarkable positive excursions CPEwc-1, 2, 3 in the Upper Series 2, in the Lower and in the Middle Furongian Series. Three distinctive negative excursions CNEwc,-1, 2, 3 were separately tested in the Lower Terreneuvian Series, Lower Series 3 and in the Upper Furongian Series. Similarly, in the corresponding horizons in the Duibian A Section, Zhejiang Province, southeastern China, three positive excursions CPEdb-1, 2, 3 and three negative excursions CNEdb-1, 2, 3 also have been discovered. We interpret these significant carbon-isotope excursions as being associated with enhanced biogenic prodnctivity, mass extinctions and eustatic events.展开更多
The Carboniferous period lasted about 60 Myr, from ~358.9 Ma to ~298.9 Ma. According to the International Commission on Stratigraphy, the Carboniferous System is subdivided into two subsystems, i.e., Mississippian a...The Carboniferous period lasted about 60 Myr, from ~358.9 Ma to ~298.9 Ma. According to the International Commission on Stratigraphy, the Carboniferous System is subdivided into two subsystems, i.e., Mississippian and Pennsylvanian, including 6 series and 7 stages. The Global Stratotype Sections and Points(GSSPs) of three stages have been ratified, the Tournaisian, Visean, and Bashkirian stages. The GSSPs of the remaining four stages(i.e., the Serpukhovian, Moscovian,Kasimovian, and Gzhelian) have not been ratified so far. This paper outlines Carboniferous stratigraphic subdivision and correlation on the basis of detailed biostratigraphy mainly from South China, and summarizes the Carboniferous chronostratigraphic framework of China. High-resolution biostratigraphic study reveals 37 conodont zones, 24 foraminiferal(including fusulinid) zones, 13 ammonoid zones, 10 brachiopod zones, and 10 rugose coral zones in the Carboniferous of China. The biostratigraphic framework based on these biozones warrants the precise correlation of regional stratigraphy of China(including2 subsystems, 4 series, and 8 stages) to that of the other regions globally. Meanwhile, the Carboniferous chemo-, sequence-,cyclo-, and event-stratigraphy of China have been intensively studied and can also be correlated worldwide. Future studies on the Carboniferous in China should focus on(1) the correlation between shallow-and deep-water facies and between marine and continental facies,(2) high-resolution astronomical cyclostratigraphy, and(3) paleoenvironment and paleoclimate analysis based on geochemical proxies such as strontium and oxygen isotopes, as well as stomatal indices of fossil plants.展开更多
基金supported by National Science Foundation of China(41574047)National Key R&D Program of China(2018YFC150330501)
文摘To reveal the geometry of the seismogenic structure of the Aug. 8, 2017 M_S 7.0 Jiuzhaigou earthquake in northern Sichuan,data from the regional seismic network from the time of the main event to Oct. 31, 2017 were used to relocate the earthquake sequence by the tomoDD program, and the focal mechanism solutions and centroid depths of the M_L ≥ 3.5 events in the sequence were determined using the CAP waveform inversion method. Further, the segmental tectonic deformation characteristics of the seismogenic faults were analyzed preliminarily by using strain rosettes and areal strains(As). The results indicate:(1) The relocated M_S 7.0 Jiuzhaigou earthquake sequence displays a narrow ~ 38 km long NNW-SSE-trending zone between the NW-striking Tazang Fault and the nearly NSstriking Minjiang Fault, two branches of the East Kunlun Fault Zone. The spatial distribution of the sequence is narrow and deep for the southern segment, and relatively wide and shallow for the northern segment. The initial rupture depth of the mainshock is 12.5 km, the dominant depth range of the aftershock sequence is between 0 and 10 km with an average depth of 6.7 km. The mainshock epicenter is located in the middle of the aftershock region, showing a bilateral rupture behavior. The centroid depths of 32 M_L ≥ 3.5 events range from 3 to 12 km with a mean of about 7.3 km, consistent with the predominant focal depth of the whole sequence.(2) The geometric structure of the seismogenic fault on the southern section of the aftershock area(south of the mainshock) is relatively simple, with overall strike of ~150° and dip angle ~75°, but the dip angle and dip-orientation exhibit some variation along the segment. The seismogenic structure on the northern segment is more complicated; several faults, including the Minjiang Fault, may be responsible for the aftershock activities. The overall strike of this section is ~159° and dip angle is ~59°, illustrating a certain clockwise rotation and a smaller dip angle than the southern segment. The differences between the two segments demonstrate variation of the geometric structure along the seismogenic faults.(3) The focal mechanism solutions of 32 M_L ≥ 3.5 events in the earthquake sequence have obvious segmental characteristics. Strike-slip earthquakes are dominant on the southern segment, while 50% of events on the northern segment are thrusting and oblique thrusting earthquakes, revealing significant differences in the kinematic features of the seismogenic faults between the two segments.(4) The strain rosettes for the mainshock and the entire sequence of 31 M_L ≥ 3.5 aftershocks correspond to strike-slip type with NWW-SEE compressional white lobes and NNE-SSW extensional black lobes of nearly similar size. The strain rosette and As value of the entire sequence of 22 M_L ≥ 3.5 events on the southern segment are the same as those of the M_S 7.0 mainshock,indicating that the tectonic deformation here is strike-slip. However, the strain rosette of the entire sequence of 10 M_L ≥ 3.5 events on the northern segment show prominent white compressional lobes and small black extensional lobes, and the related As value is up to 0.52,indicating that the tectonic deformation of this segment is oblique thrusting with a certain strike-slip component. Differences between the two segments all reveal distinctly obvious segmental characteristics of the tectonic deformation of the seismogenic faults for the Jiuzhaigou earthquake sequence.
基金supported by National Natural Science Foundation of China (No. 41574047)Sichuan–Yunnan national earthquake monitoring and prediction experimental field project (2016CESE0101, 2018CSES0209)Project of Science for Earthquake Resilience (XH202302)
文摘In order to understand the crustal structure and tectonic background of the Changning–Gongxiang area, southeastern Sichuan Province, where a series of moderate-to-strong earthquakes occurred in recent years, we utilized the seismic phase data both from a local dense array and from the regional seismic networks;we used the tomoDD program to invert for the high-resolution three-dimensional velocity structure within the depth range of 0–10 km and for accurate hypocentral locations in this area. We analyzed the seismogenic structures for the events of Xingwen M5.7 in 2018 and Gongxian M5.3 and Changning M6.0 in 2019. The results show that:(1) widespread lateral inhomogeneity exists in the velocity structure of the study area, and the location of the velocity anomaly is largely consistent with known structures. In the range of distinguishable depth, the inhomogeneity decreases with increasing depth, and the velocity structure anomalies in some areas are continuous in depth;(2) earthquakes occurred in clusters, showing the characteristics of zonal folding trends in the NW-SE and NE-SW directions;the focal depth in the area is generally shallow in both the sedimentary cap and the crystalline basement. The seismogenic structures of small earthquake clusters are different in size and occurrence in different sections, and the clusters occurred mostly in regions with high P-or S-wave velocities;(3) synthesis of a variety of data suggests that the seismogenic structures of the Xingwen M5.7 and Changning M6.0 earthquakes are associated with slip faults that trend NW-SE in, respectively, the south wing and the axis of the Changning–Shuanghe anticline, while that of the Gongxian M5.3 earthquake is associated with thrust faults that trend N-S in the Jianwu syncline region. The dynamic sources of the three earthquakes are all from the SE pushing of the Qinghai–Tibet block on the Sichuan basin;(4) the risk of future strong earthquakes in this area must be reevaluated in light of the facts(a)that in recent years, moderate-to-strong earthquake swarms have occurred frequently in southeast Sichuan;(b) that the complex structural area exhibits the easy-to-trigger characteristic, and(c) that the small-scale faults in this area are characterized by the phenomenon of stress "lock and release".
基金supported by the National Natural Science Foundation of China(Nos.41672028,41672002,41330101,41221001)
文摘Cambrian carbonates with abundant fossils of agnostoid trilobites deposited on the southern slope (Jiangnan slope belt) of the Yangtze Platform and in the Jiangnan deepwater basin are well exposed in the Wangeun Section of western Hunan, South China, and in the Duibian A Section of western Zhejiang, southeastern China, respectively. To better understand the response of carbonisotope excursions to depositional environment changes, mass extinctions and eustatic events, we collected 530 carbonate samples in fresh roadcut exposures of the two measured sections for analysis of carbon and oxygen isotopic compositions. Data of δ^13C from the Wangcun Section, western Hunan, South China, demonstrate that the Cambrian carbon-isotope profile includes three remarkable positive excursions CPEwc-1, 2, 3 in the Upper Series 2, in the Lower and in the Middle Furongian Series. Three distinctive negative excursions CNEwc,-1, 2, 3 were separately tested in the Lower Terreneuvian Series, Lower Series 3 and in the Upper Furongian Series. Similarly, in the corresponding horizons in the Duibian A Section, Zhejiang Province, southeastern China, three positive excursions CPEdb-1, 2, 3 and three negative excursions CNEdb-1, 2, 3 also have been discovered. We interpret these significant carbon-isotope excursions as being associated with enhanced biogenic prodnctivity, mass extinctions and eustatic events.
基金supported by the Chinese Academy of Sciences (Grant Nos. XDB26000000, 18000000 and XDPB05)the National Natural Science Foundation of China (Grant No. 41290263)and the Ministry of Science and Technology of China (Grant No. 2013FY111000)
文摘The Carboniferous period lasted about 60 Myr, from ~358.9 Ma to ~298.9 Ma. According to the International Commission on Stratigraphy, the Carboniferous System is subdivided into two subsystems, i.e., Mississippian and Pennsylvanian, including 6 series and 7 stages. The Global Stratotype Sections and Points(GSSPs) of three stages have been ratified, the Tournaisian, Visean, and Bashkirian stages. The GSSPs of the remaining four stages(i.e., the Serpukhovian, Moscovian,Kasimovian, and Gzhelian) have not been ratified so far. This paper outlines Carboniferous stratigraphic subdivision and correlation on the basis of detailed biostratigraphy mainly from South China, and summarizes the Carboniferous chronostratigraphic framework of China. High-resolution biostratigraphic study reveals 37 conodont zones, 24 foraminiferal(including fusulinid) zones, 13 ammonoid zones, 10 brachiopod zones, and 10 rugose coral zones in the Carboniferous of China. The biostratigraphic framework based on these biozones warrants the precise correlation of regional stratigraphy of China(including2 subsystems, 4 series, and 8 stages) to that of the other regions globally. Meanwhile, the Carboniferous chemo-, sequence-,cyclo-, and event-stratigraphy of China have been intensively studied and can also be correlated worldwide. Future studies on the Carboniferous in China should focus on(1) the correlation between shallow-and deep-water facies and between marine and continental facies,(2) high-resolution astronomical cyclostratigraphy, and(3) paleoenvironment and paleoclimate analysis based on geochemical proxies such as strontium and oxygen isotopes, as well as stomatal indices of fossil plants.