期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
附着生物汞甲基化及其对水环境甲基汞归趋的影响
1
作者 陈哲 向玉萍 +5 位作者 阴永光 刘艳伟 陈路锋 梁勇 王定勇 蔡勇 《化学进展》 SCIE CAS CSCD 北大核心 2024年第5期771-782,共12页
汞是一种重要的全球性污染物。水环境是汞重要的汇,也是汞甲基化和生物累积最重要的场所。作为最重要的初级生产者之一,附着生物广泛存在于湖泊、湿地、溪流等水环境中。相较于底泥和水柱,附着生物具有增强的汞甲基化潜势,是水环境中甲... 汞是一种重要的全球性污染物。水环境是汞重要的汇,也是汞甲基化和生物累积最重要的场所。作为最重要的初级生产者之一,附着生物广泛存在于湖泊、湿地、溪流等水环境中。相较于底泥和水柱,附着生物具有增强的汞甲基化潜势,是水环境中甲基汞的重要来源以及汞进入食物链的关键途经。附着生物具有多层次的微生物结构及功能复杂性,不同物种间的相互作用使其内部具有明显的氧化还原梯度,形成有利于汞甲基化的缺氧微环境。一方面,附着生物中的藻类和细菌可从周围水体中富集无机汞,为汞甲基化提供充足的底物。另一方面,附着生物中富含多种藻类、细菌等的代谢分泌物,其官能团(如巯基)可调控无机汞的赋存形态并增强其生物有效性。另外,不同微生物之间的代谢物共享可增强汞甲基化细菌的丰度和代谢活性,从而促进甲基汞的生成。附着生物中汞甲基化机制及生物累积的研究可为深入理解水环境中甲基汞的来源及归趋,准确评估汞污染与环境风险提供科学依据与数据支持。 展开更多
关键词 甲基汞 附着生物 富集 甲基化 食物链
原文传递
Dynamics of total culturable bacteria and its relationship with methylmercury in the soils of the water level fluctuation zone of the Three Gorges Reservoir 被引量:10
2
作者 yuping xiang Hongxia Du +2 位作者 Hong Shen Cheng Zhang Dingyong Wang 《Chinese Science Bulletin》 SCIE EI CAS 2014年第24期2966-2972,共7页
Field investigations were conducted to study the temporal and spatial distribution characteristics of total culturable bacteria(TCB)and its relationship with methylmercury(MeHg)in the soils of the water level fluctuat... Field investigations were conducted to study the temporal and spatial distribution characteristics of total culturable bacteria(TCB)and its relationship with methylmercury(MeHg)in the soils of the water level fluctuation zone of the Three Gorges Reservoir.Different altitudes(170–180,170–175,165–170 and 160–165 m)in Zhenxi(Site 1),Shibaozhai(Site 2)and Tujing(Site 3),Chongqing,China were chosen as sampling sites.Results indicated that TCB did not have significant difference in the top(0–10 cm)and sub(10–20 cm)soil of the non-inundated area(175–180 m),but showing a significant difference in the water level fluctuation zone(\175 m,suggesting that water level fluctuation had an important effect on TCB.Moreover,TCB in soils of various altitudes of Site 1 and 2had significant difference,while for Site 3,this difference was not significant.And the difference of TCB in Site 2was much greater than that in Site 1.These results suggested that there were significant differences for TCB in soils of mainstream and tributaries.In addition,TCB in soils of 10–20 cm had significant or highly significant positive correlations with MeHg level(r C 0.762,P B 0.048),thus we assumed that there may be some aerobic microorganisms playing dominant roles in mercury methylation. 展开更多
关键词 水库水位 甲基汞 涨落带 共培养 土壤 三峡 细菌 时空分布特征
原文传递
Water level fluctuations influence microbial communities and mercury methylation in soils in the Three Gorges Reservoir,China 被引量:2
3
作者 yuping xiang Yongmin Wang +2 位作者 Cheng Zhang Hong Shen Dingyong Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第6期206-217,共12页
Reservoirs tend to have enhanced methylmercury(MeHg) concentrations compared to natural lakes and rivers, and water level fluctuations can promote MeHg production. Until now, little research has been conducted on th... Reservoirs tend to have enhanced methylmercury(MeHg) concentrations compared to natural lakes and rivers, and water level fluctuations can promote MeHg production. Until now, little research has been conducted on the effects of microorganisms in soils for the formation of MeHg during different drying and flooding alternating conditions in the Three Gorges Reservoir(TGR). This study aimed to understand how water level fluctuations affect soil microbial composition and mercury concentrations, and if such microbial variations are related to Hg methylation. The results showed that MeHg concentrations and the ratios of MeHg to THg(MeHg%) in soils were higher in the seasonally drying and flooding alternating areas(DFAs, 175–155 m) than those in the non-inundated(NIAs, 〉 175 m) and inundated areas(IAs, 〈 145 m). However, MeHg% in all samples was less than 1%, indicating that the Hg methylation activity in the soils of the TGR was under a low level. 454 highthroughput sequencing of 16 S rRNA gene amplicons showed that soil bacterial abundance and diversity were relatively higher in DFA compared to those in NIA and IA, and microbial community composition varied in these three areas. At the family level, those groups in Deltaproteobacteria and Methanomicrobia that might have many Hg methylators were also showed a higher relative abundance in DFA, which might be the reason for the higher MeHg production in these areas. Overall, our results suggested that seasonally water level fluctuations can enhance the microbial abundance and diversity, as well as MeHg production in the TGR. 展开更多
关键词 Water level fluctuation zone Three Gorges Reservoir SOIL Microbial communities METHYLMERCURY Methylators
原文传递
Role of the rhizosphere of a flooding-tolerant herb in promoting mercury methylation in water-level fluctuation zones
4
作者 Juan Wang yuping xiang +6 位作者 Xiaosong Tian Cheng Zhang Guiqing Gong Jinping Xue Tao Jiang Dingyong Wang Yongmin Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第9期139-151,共13页
The water-level fluctuation zone(WLFZ) has been considered as a hotspot for mercury(Hg) methylation. Flooding-tolerant herbs are gradually acclimated to this water-land ecotone, tending to form substantial root system... The water-level fluctuation zone(WLFZ) has been considered as a hotspot for mercury(Hg) methylation. Flooding-tolerant herbs are gradually acclimated to this water-land ecotone, tending to form substantial root systems for improving erosion resistance. Accompanying rhizosphere microzone plays crucial but unclear roles in methylmercury(Me Hg) formation in the WLFZ. Thus, we conducted this study in the WLFZ of the Three Gorges Reservoir, to explore effects of the rhizosphere of a dominant flooding-tolerant herb(bermudagrass) on Me Hg production. The elevated Hg and Me Hg in rhizosphere soils suggest that the rhizosphere environment provides favorable conditions for Hg accumulation and methylation. The increased bioavailable Hg and microbial activity in the rhizosphere probably serve as important factors driving Me Hg formation in the presence of bermudagrass. Simultaneously, the rhizosphere environments changed the richness, diversity, and distribution of hgc A-containing microorganisms. Here, a typical ironreducing bacterium( Geobacteraceae) has been screened, however, the majority of hgc A genes detected in rhizosphere, near-, and non-rhizosphere soils of the WLFZ were unclassified. Collectively, these results provide new insights into the elevated Me Hg production as related to microbial processes in the rhizosphere of perennial herbs in the WLFZ, with general implications for Hg cycling in other ecosystems with water-level fluctuations. 展开更多
关键词 Three Gorges Reservoir Water-level fluctuation zone Rhizosphere soil METHYLMERCURY Mercury methylator
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部