An understanding of wheat yield and yield stability response to fertilization is important for sustainable wheat production. A 36-year long-term fertilization experiment was employed to evaluate the yield and yield st...An understanding of wheat yield and yield stability response to fertilization is important for sustainable wheat production. A 36-year long-term fertilization experiment was employed to evaluate the yield and yield stability of winter wheat. Five fertilization regimes were compared,including(1) CK, no fertilizer;(2) NPK, inorganic fertilizer only;(3) O, organic fertilizer only;(4)NPKO, 50% of NPK plus 50% of O, and(5) HNPKO, 80% of NPK plus 80% of O. The greatest yield increase was recorded in HNPKO, followed by NPKO, with O producing the lowest mean yield increase. Over the 36 years, the rate of wheat yield increase in fertilized plots ranged from95.31 kg ha-1 year-1 in the HNPKO to 138.65 kg ha-1 year-1 in the O. Yield stability analysis using the additive main effects and multiplicative interactions(AMMI) method assigned 62.3%, 26.3%,and 11.4% of sums of squares to fertilization effect, environmental effect, and fertilization ×environment interaction effect, respectively. The combination of inorganic and organic fertilization(NPKO and HNPKO) appeared to produce more stable yields than O or NPK, with lower coefficients of variation and AMMI stability value. However, wheat grown with O seemed to be the most susceptible to climate change and the least productive among the fertilized plots.Significant correlations of grain yield with soil properties and with mean air temperature were observed. These findings suggest that inorganic + organic fertilizer can increase wheat yield and its stability by improvement in soil fertility and reduction in variability to climate change.展开更多
Mineral fertilizers and organic amendment can affect the various soil organic matter (SOM) pools and the distribution of organic carbon (OC) and nitrogen (N) in these pools. It is unknown how OC and N are distributed ...Mineral fertilizers and organic amendment can affect the various soil organic matter (SOM) pools and the distribution of organic carbon (OC) and nitrogen (N) in these pools. It is unknown how OC and N are distributed in different SOM pools under different long-term fertilization regimes. Therefore, this study aimed to examine the effects on OC and N concentrations in various SOM pools after 33 years of application of chemical fertilizer and organic amendment in Anhui Province in the Huang-Huai-Hai Plain, eastern China. This long-term experiment consisted of five fertilization treatments measuring changes in the OC and N concentrations in the soils and different SOM fractions of each experiment plot. Organic amendment increased the OC and N concentrations in the mineral-associated fraction, the coarse mineral-associated fraction and the aggregates compared with the values obtained without fertilizer application. Mineral fertilizer application alone increased the abovementioned indexes, but this increase was small. There was a small but significant increase in the OC and N concentrations in the free particulate fraction, and the change in magnitude had no obvious effect on the total OC (TOC) and total N (TN) concentrations in soils. More than 80% of the water-stable aggregate-associated C was stored in macroaggregates >2 mm in size. More than 60% of the TOC and TN accumulated within mineral associations in the soil, and organic amendment increased this proportion to 80%. These results suggest that the OC in Vertisols is dominated by mineral-associated OC and that the effect of organic amendment on mineral-associated OC is obvious.展开更多
基金supported by the National Key Research and Development Program of China(2016YFD0300803)the Special Fund for Agro-scientific Research in the Public Interest(201503116-10)+1 种基金the Agricultural Science and Technology Innovation Program(CAAS-XTCX2016019-03 and Y2016XT01-03)the Science and Technology Major Project of Anhui Province(16030701099)
文摘An understanding of wheat yield and yield stability response to fertilization is important for sustainable wheat production. A 36-year long-term fertilization experiment was employed to evaluate the yield and yield stability of winter wheat. Five fertilization regimes were compared,including(1) CK, no fertilizer;(2) NPK, inorganic fertilizer only;(3) O, organic fertilizer only;(4)NPKO, 50% of NPK plus 50% of O, and(5) HNPKO, 80% of NPK plus 80% of O. The greatest yield increase was recorded in HNPKO, followed by NPKO, with O producing the lowest mean yield increase. Over the 36 years, the rate of wheat yield increase in fertilized plots ranged from95.31 kg ha-1 year-1 in the HNPKO to 138.65 kg ha-1 year-1 in the O. Yield stability analysis using the additive main effects and multiplicative interactions(AMMI) method assigned 62.3%, 26.3%,and 11.4% of sums of squares to fertilization effect, environmental effect, and fertilization ×environment interaction effect, respectively. The combination of inorganic and organic fertilization(NPKO and HNPKO) appeared to produce more stable yields than O or NPK, with lower coefficients of variation and AMMI stability value. However, wheat grown with O seemed to be the most susceptible to climate change and the least productive among the fertilized plots.Significant correlations of grain yield with soil properties and with mean air temperature were observed. These findings suggest that inorganic + organic fertilizer can increase wheat yield and its stability by improvement in soil fertility and reduction in variability to climate change.
文摘Mineral fertilizers and organic amendment can affect the various soil organic matter (SOM) pools and the distribution of organic carbon (OC) and nitrogen (N) in these pools. It is unknown how OC and N are distributed in different SOM pools under different long-term fertilization regimes. Therefore, this study aimed to examine the effects on OC and N concentrations in various SOM pools after 33 years of application of chemical fertilizer and organic amendment in Anhui Province in the Huang-Huai-Hai Plain, eastern China. This long-term experiment consisted of five fertilization treatments measuring changes in the OC and N concentrations in the soils and different SOM fractions of each experiment plot. Organic amendment increased the OC and N concentrations in the mineral-associated fraction, the coarse mineral-associated fraction and the aggregates compared with the values obtained without fertilizer application. Mineral fertilizer application alone increased the abovementioned indexes, but this increase was small. There was a small but significant increase in the OC and N concentrations in the free particulate fraction, and the change in magnitude had no obvious effect on the total OC (TOC) and total N (TN) concentrations in soils. More than 80% of the water-stable aggregate-associated C was stored in macroaggregates >2 mm in size. More than 60% of the TOC and TN accumulated within mineral associations in the soil, and organic amendment increased this proportion to 80%. These results suggest that the OC in Vertisols is dominated by mineral-associated OC and that the effect of organic amendment on mineral-associated OC is obvious.