Although anti-cancer nanotherapeutics have made breakthroughs,many remain clinically unsatisfactory due to limited delivery efficiency and complicated biological barriers.Here,we prepared charge-reversible crosslinked...Although anti-cancer nanotherapeutics have made breakthroughs,many remain clinically unsatisfactory due to limited delivery efficiency and complicated biological barriers.Here,we prepared charge-reversible crosslinked nanoparticles(PDC NPs)by supramolecular self-assembly of pro-apoptotic peptides and photosensitizers,followed by crosslinking the self-assemblies with polyethylene glycol to impart tumor microenvironment responsiveness and charge-reversibility.The resultant PDC NPs have a high drug loading of 68.3%,substantially exceeding that of 10%–15%in conventional drug delivery systems.PDC NPs can overcome the delivery hurdles to significantly improve the tumor accumulation and endocytosis of payloads by surface charge reversal and responsive crosslinking strategy.Pro-apoptotic peptides target the mitochondrial membranes and block the respiratory effect to reduce local oxygen consumption,which extensively augments oxygen-dependent photodynamic therapy(PDT).The photosensitizers around mitochondria increased along with the peptides,allowing PDT to work with pro-apoptotic peptides synergistically to induce tumor cell death by mitochondria-dependent apoptotic pathways.Our strategy would provide a valuable reference for improving the delivery efficiency of hydrophilic peptides and developing mitochondrial-targeting cancer therapies.展开更多
基金support from the National Natural Science Foundation of China(Nos.82172084 and 81803002)STI2030-Major Projects(No.2022ZD0212500)。
文摘Although anti-cancer nanotherapeutics have made breakthroughs,many remain clinically unsatisfactory due to limited delivery efficiency and complicated biological barriers.Here,we prepared charge-reversible crosslinked nanoparticles(PDC NPs)by supramolecular self-assembly of pro-apoptotic peptides and photosensitizers,followed by crosslinking the self-assemblies with polyethylene glycol to impart tumor microenvironment responsiveness and charge-reversibility.The resultant PDC NPs have a high drug loading of 68.3%,substantially exceeding that of 10%–15%in conventional drug delivery systems.PDC NPs can overcome the delivery hurdles to significantly improve the tumor accumulation and endocytosis of payloads by surface charge reversal and responsive crosslinking strategy.Pro-apoptotic peptides target the mitochondrial membranes and block the respiratory effect to reduce local oxygen consumption,which extensively augments oxygen-dependent photodynamic therapy(PDT).The photosensitizers around mitochondria increased along with the peptides,allowing PDT to work with pro-apoptotic peptides synergistically to induce tumor cell death by mitochondria-dependent apoptotic pathways.Our strategy would provide a valuable reference for improving the delivery efficiency of hydrophilic peptides and developing mitochondrial-targeting cancer therapies.