In order to improve the ability of SCR catalyst to catalyze the oxidation of gaseous elemental mercury,a series of novel Ce modified SCR(Selection Catalytic Reduction,V_(2)O_(5)-WO_(3)/TiO_(2))catalysts were prepared ...In order to improve the ability of SCR catalyst to catalyze the oxidation of gaseous elemental mercury,a series of novel Ce modified SCR(Selection Catalytic Reduction,V_(2)O_(5)-WO_(3)/TiO_(2))catalysts were prepared via two-step ultrasonic impregnation method.The performance of Ce/SCR catalysts on Hg^(0)oxidation and NO reduction as well as the catalytic mechanism on Hg^(0)oxidation was also studied.The XRD,BET measurements and XPS were used to characterize the catalysts.The results showed that the pore volume and pore size of catalyst was reduced by Ce doping,and the specific surface area decreased with the increase of Ce content in catalyst.The performance on Hg^(0)oxidation was promoted by the introduction of CeO_(2).Ce_(1)/SCR(1%Ce,wt.%)catalyst exhibited the best Hg^(0)oxidation activity of 21.2%higher than that of SCR catalyst at 350℃,of which the NO conversion efficiency was also higher at 200-400℃.Furthermore,Ce_(1)/SCR showed a better H_(2)O resistance but a slightly weaker SO_(2)resistance than SCR catalyst.The chemisorbed oxygen and weak absorbed oxygen on the surface of catalyst were increased by the addition of CeO_(2).The chemisorbed oxygen and weak absorbed oxygen on the surface of catalyst were increased by the addition of CeO_(2).The Ce_(1)/SCR possed better redox ability compared with SCR catalyst.HCl was the most effective gas responsible for the Hg^(0)oxidation,and the redox cycle(V^(4+)+Ce^(4+)←→V^(5+)+Ce^(3+))played an important role in promoting Hg^(0)oxidation.展开更多
A considerable amount of Hg is retained in flue gas desulfurization(FGD) gypsum from Wet Flue Gas Desulfurization(WFGD) systems. For this reason, it is important to determine the species of Hg in FGD gypsum not on...A considerable amount of Hg is retained in flue gas desulfurization(FGD) gypsum from Wet Flue Gas Desulfurization(WFGD) systems. For this reason, it is important to determine the species of Hg in FGD gypsum not only to understand the mechanism of Hg removal by WFGD systems but also to determine the final fate of Hg when FGD gypsum is disposed. In this study, Temperature Programmed Decomposition(TPD) and Sequential Chemical Extraction(SCE) were applied to FGD gypsum to identify the Hg species in it. The FGD gypsum samples were collected from seven coal-fired power plants in China, with Hg concentrations ranging from 0.19 to 3.27 μg/g. A series of pure Hg compounds were used as reference materials in TPD experiments and the results revealed that the decomposition temperatures of different Hg compounds increase in the order of Hg_2Cl_2〈 HgCl_2〈 black HgS 〈 Hg_2SO_4〈 red HgS 〈 HgO 〈 HgSO_4. The Hg compounds existing in FGD gypsums identified by TPD included HgCl_2, Hg_2Cl_2, Hg_2SO_4, black HgS and red HgS, of which mercury sulfides were the primary compounds. The results of SCE indicated that Hg was mainly distributed in the strongly complexed phase. The low Hg content in FGD gypsum increases the ambiguity of assigning extraction fractions to certain Hg species by SCE. The fact that the primary compounds in FGD gypsum are HgS phases leads the leaching of Hg in the natural environment to be quite low, but a considerable amount of Hg may be released during the industrial heating process.展开更多
基金This work was supported by the National Key Research and Development Program of China(No.2016YFB0600603).
文摘In order to improve the ability of SCR catalyst to catalyze the oxidation of gaseous elemental mercury,a series of novel Ce modified SCR(Selection Catalytic Reduction,V_(2)O_(5)-WO_(3)/TiO_(2))catalysts were prepared via two-step ultrasonic impregnation method.The performance of Ce/SCR catalysts on Hg^(0)oxidation and NO reduction as well as the catalytic mechanism on Hg^(0)oxidation was also studied.The XRD,BET measurements and XPS were used to characterize the catalysts.The results showed that the pore volume and pore size of catalyst was reduced by Ce doping,and the specific surface area decreased with the increase of Ce content in catalyst.The performance on Hg^(0)oxidation was promoted by the introduction of CeO_(2).Ce_(1)/SCR(1%Ce,wt.%)catalyst exhibited the best Hg^(0)oxidation activity of 21.2%higher than that of SCR catalyst at 350℃,of which the NO conversion efficiency was also higher at 200-400℃.Furthermore,Ce_(1)/SCR showed a better H_(2)O resistance but a slightly weaker SO_(2)resistance than SCR catalyst.The chemisorbed oxygen and weak absorbed oxygen on the surface of catalyst were increased by the addition of CeO_(2).The chemisorbed oxygen and weak absorbed oxygen on the surface of catalyst were increased by the addition of CeO_(2).The Ce_(1)/SCR possed better redox ability compared with SCR catalyst.HCl was the most effective gas responsible for the Hg^(0)oxidation,and the redox cycle(V^(4+)+Ce^(4+)←→V^(5+)+Ce^(3+))played an important role in promoting Hg^(0)oxidation.
基金supported by the National Natural Science Foundation of China (No. 51376109)
文摘A considerable amount of Hg is retained in flue gas desulfurization(FGD) gypsum from Wet Flue Gas Desulfurization(WFGD) systems. For this reason, it is important to determine the species of Hg in FGD gypsum not only to understand the mechanism of Hg removal by WFGD systems but also to determine the final fate of Hg when FGD gypsum is disposed. In this study, Temperature Programmed Decomposition(TPD) and Sequential Chemical Extraction(SCE) were applied to FGD gypsum to identify the Hg species in it. The FGD gypsum samples were collected from seven coal-fired power plants in China, with Hg concentrations ranging from 0.19 to 3.27 μg/g. A series of pure Hg compounds were used as reference materials in TPD experiments and the results revealed that the decomposition temperatures of different Hg compounds increase in the order of Hg_2Cl_2〈 HgCl_2〈 black HgS 〈 Hg_2SO_4〈 red HgS 〈 HgO 〈 HgSO_4. The Hg compounds existing in FGD gypsums identified by TPD included HgCl_2, Hg_2Cl_2, Hg_2SO_4, black HgS and red HgS, of which mercury sulfides were the primary compounds. The results of SCE indicated that Hg was mainly distributed in the strongly complexed phase. The low Hg content in FGD gypsum increases the ambiguity of assigning extraction fractions to certain Hg species by SCE. The fact that the primary compounds in FGD gypsum are HgS phases leads the leaching of Hg in the natural environment to be quite low, but a considerable amount of Hg may be released during the industrial heating process.