The paper discusses main aspects of low cycle fatigue influence on the lifetime ofengine parts.The importance and history of the problem,the main experiments and the effectsimpacting the low cycle fatigue of structura...The paper discusses main aspects of low cycle fatigue influence on the lifetime ofengine parts.The importance and history of the problem,the main experiments and the effectsimpacting the low cycle fatigue of structural materials are described.A hypothesis about theexistence of a thermomechanical surface of structural material,generalized to the case of acyclical loading was used to approximate the loops of cyclic nonisothermal elastoplasticdeformation curves.The cyclic deformation curve model is based on the following threeparameters:the elastic modulus during unloading,the Bauschinger effect and the conversionparameter of the nonlinear part of its first halfcycle.This model also accounts for theaccumulated plastic strain,as well as the testing temperature.The criterion of durability isformulated,based on the dependence between the number of halfcycles to failure and theaccumulated plastic deformation.Deformation theory of plasticity,generalized to the case ofcyclic deformation,in combination with the durability model and technology of"dying"elements is applied to the finite element analysis of low cycle fatigue of gas turbine engineparts.The results of calculations are demonstrated.展开更多
文摘The paper discusses main aspects of low cycle fatigue influence on the lifetime ofengine parts.The importance and history of the problem,the main experiments and the effectsimpacting the low cycle fatigue of structural materials are described.A hypothesis about theexistence of a thermomechanical surface of structural material,generalized to the case of acyclical loading was used to approximate the loops of cyclic nonisothermal elastoplasticdeformation curves.The cyclic deformation curve model is based on the following threeparameters:the elastic modulus during unloading,the Bauschinger effect and the conversionparameter of the nonlinear part of its first halfcycle.This model also accounts for theaccumulated plastic strain,as well as the testing temperature.The criterion of durability isformulated,based on the dependence between the number of halfcycles to failure and theaccumulated plastic deformation.Deformation theory of plasticity,generalized to the case ofcyclic deformation,in combination with the durability model and technology of"dying"elements is applied to the finite element analysis of low cycle fatigue of gas turbine engineparts.The results of calculations are demonstrated.