Objective: To observe the efficacy of Shenmai injection in the treatment for adverse reactions of chemotherapy on advanced non-small cell lung cancer (NSCLC). Methods: 45 NSCLC patients with stages IIIb-IV were random...Objective: To observe the efficacy of Shenmai injection in the treatment for adverse reactions of chemotherapy on advanced non-small cell lung cancer (NSCLC). Methods: 45 NSCLC patients with stages IIIb-IV were randomly divided into two groups: the treatment group (treated by chemotherapy combined with Shenmai injection) and the control group (treated by chemotherapy only). The efficacy of the two groups was evaluated after 3 cycles of treatment. Results: There was no significant difference between the two groups in the recent curative effects (P > 0.05), while there were significant differences between them in Karnofsky score and weight (P < 0.05). The treatment group was better than the control group in preventing leucopenia and decreased hemoglobin, and significant differences were found between them (P < 0.05). The incidence of thrombocytopenia, nausea and vomiting, hepatic and renal dysfunction in the treatment group was lower than that in the control group, but no significant differences were found between them (P > 0.05). Conclusion: Shenmai injection would not influence the efficacy of chemotherapy on advanced NSCLC patients, while it could improve the quality of life, increase the body weight of patients, alleviate adverse reactions of chemotherapy as myelosuppression so as to improve the tolerance of organism to chemotherapy.展开更多
One of the major barriers in utilizing prodrug nanocarriers for cancer therapy is the slow release of parent drug in tumors.Tumor cells generally display the higher oxidative level than normal cells,and also displayed...One of the major barriers in utilizing prodrug nanocarriers for cancer therapy is the slow release of parent drug in tumors.Tumor cells generally display the higher oxidative level than normal cells,and also displayed the heterogeneity in terms of redox homeostasis level.We previously found that the disulfide bond-linkage demonstrates surprising oxidationsensitivity to form the hydrophilic sulfoxide and sulphone groups.Herein,we develop oxidation-strengthened prodrug nanosystem loaded with pyropheophorbide a(PPa)to achieve light-activatable cascade drug release and enhance therapeutic efficacy.The disulfide bond-driven prodrug nanosystems not only respond to the redox-heterogeneity in tumor,but also respond to the exogenous oxidant(singlet oxygen)elicited by photosensitizers.Once the prodrug nanoparticles(NPs)are activated under irradiation,they would undergo an oxidative self-strengthened process,resulting in a facilitated drug cascade release.The IC50 value of the PPa@PTX-S-S NPs without irradiation was 2-fold higher than those of NPs plus irradiation.In vivo,the PPa@PTX prodrug NPs display prolonged systemic circulation and increased accumulation in tumor site.The PPa@PTXS-S NPs showed much higher efficiency than free PTX or the PPa@PTX-C-C NPs to suppress the growth of 4 T1 tumors.Therefore,this novel oxidation-strengthened disulfide-bridged prodrug-nanosystem has a great potential in the enhanced efficacy of cancer synergetic photochemotherapy.展开更多
The mechanisms of new particle formation(NPF)events that occurred under high aerosol loadings(“polluted”NPF)in the atmosphere have been unclear,which has inhibited the precision of particlepollution control.To deepe...The mechanisms of new particle formation(NPF)events that occurred under high aerosol loadings(“polluted”NPF)in the atmosphere have been unclear,which has inhibited the precision of particlepollution control.To deepen the understanding of how the“polluted”NPF events occur,a one-monthcomprehensive measurement was conducted in the atmosphere of Beijing during the summer of2016.The“clean”NPF events(frequency=22%)(condensation sink,CS<0.015 s^(-1))were found to becaused by local nucleation and growth.The“polluted”NPF events(frequency=28%)(CS>0.015 s^(-1))were influenced by both local nucleation-growth and regional transport,and the contributions from thetwo factors to 6e25 nm particle number concentration were 60%and 40%,respectively.This studyemphasized the importance of the transport for nanoparticles in relatively polluted atmospheres,and forthat the regional joint particle pollution control would be an essential policy.展开更多
In the troposphere, ozone is a harmful gas compound to both human health and vegetation. Ozone is produced from the reaction of NO_x(@NO + NO_2) and VOCs(volatile organic compounds) with light. Due to the highly nonli...In the troposphere, ozone is a harmful gas compound to both human health and vegetation. Ozone is produced from the reaction of NO_x(@NO + NO_2) and VOCs(volatile organic compounds) with light. Due to the highly nonlinear relationships between ozone and its precursors, proper ozone mitigation relies on the knowledge of chemical mechanisms. In this study, an observation-based method is used to simulate ozone formation and elucidate its controlling factors for a rural site on the North China Plain. The instantaneous ozone production rate is calculated utilizing a box model using the dataset obtained from the Wangdu campaign. First, the model was operated in a time-dependent mode to calculate the ozone production rate at each time stamp. The calculated ozone formation rate showed a diurnal average maximum value of 17 ppbv/h(1-h diurnal averaged). The contribution of individual peroxy radicals to ozone production was analyzed. In addition, the functional dependence of calculated P(O_3) reveals that ozone production was in a NO_x-limited regime during the campaign. Furthermore, the missing peroxy radical source will further extend NO_x-limited conditions to earlier in the day, making NO_xlimitation dominate more of a day than the current chemical model predicts. Finally, a multiple scenarios mode,also known as EKMA(empirical kinetic modeling approach), was used to simulate the response of P(O_3) to the imaginary change in precursor concentrations. We found that ozone production was in the NO_x-limited region. However, the use of NO_2 measured by the molybdenum converter and/or the absence of a peroxy radical source in the current chemical model could over-emphasize the VOC-limited effect on ozone production.展开更多
To investigate the characteristics and the specific mechanism of continuous haze,comprehensive measurements were conducted from 15 October to 19 November in the Atmospheric Environment Monitoring Super-Station in Hesh...To investigate the characteristics and the specific mechanism of continuous haze,comprehensive measurements were conducted from 15 October to 19 November in the Atmospheric Environment Monitoring Super-Station in Heshan of Guangdong province.Five haze episodes occurred in October and November 2014 in the Pearl River Delta(PRD)region. The meteorological parameters, gas data, chemical compositions, and optical parameters of the aerosols were obtained. Among these events, the second haze episode,with the highest concentration of PM2.5 of 187.51 μg/m^3, was the most severe. NO^3-was always higher than SO_4^(2-), which indicated that motor vehicles played an important role in the haze, even though the oxidation rate from SO_2 to SO_4^(2-)was faster than that of NOXto NO_3^-. The difference between the hourly averages of Na+and K+during the haze episode and clean days was small, implying that straw combustion and sea salt had no significant effect on the occurrence of haze, and the backward trajectories of the air masses also conformed with this result. The air pollutants were difficult to disperse because of the significant decrease in the planetary boundary layer(PBL) height. Relative humidity played a crucial role in the formation of haze by leading to hygroscopic growth of the diameter of aerosols.展开更多
Particle density is an important physical property of atmospheric particles. The information on high time-resolution size-resolved particle density is essential for understanding the atmospheric physical and chemical ...Particle density is an important physical property of atmospheric particles. The information on high time-resolution size-resolved particle density is essential for understanding the atmospheric physical and chemical aging processes of aerosols particles. In the present study, a centrifugal particle mass analyzer (CPMA) combined with a differential mobility analyzer (DMA) was deployed to determine the size-resolved effective density of 50 to 350 nm particles at a rural site of Beijing during summer 2016. The measured particle effective densities decreased with increasing particle sizes and ranged from 1.43 to 1.55 g/cm3, on average. The effective particle density distributions were dominated by a mode peaked at around 1.5 g/cm3 for 50 to 350 nm particles. Extra modes with peaks at 1.0, 0.8, and 0.6 g/cm3 for 150, 240, and 350 nm particles, which might be freshly emitted soot particles, were observed during intensive primary emissions episodes. The particle effective densities showed a diurnal variation pattern, with higher values during daytime. A case study showed that the effective density of Aitken mode particles during the new particle formation (NPF) event decreased considerably, indicating the significant contribution of organics to new particle growth.展开更多
The heterogeneous hydrolysis of dinitrogen pentoxide(N2O5)plays an important role in regulating NOx.The N2O5 uptake coefficient,γ(N2O5),was determined using an iterative box model that was constrained to observationa...The heterogeneous hydrolysis of dinitrogen pentoxide(N2O5)plays an important role in regulating NOx.The N2O5 uptake coefficient,γ(N2O5),was determined using an iterative box model that was constrained to observational data obtained in suburban Beijing from February to March 2016.The box model determined 2289 individualγ(N2O5)values that varied from<0.001 to 0.02 with an average value of 0.0046±0.0039(and a median value of 0.0032).We found the derived winterγ(N2O5)values in Beijing were relatively low as compared to values reported in previous field studies conducted during winter in Hong Kong(average value of 0.014)and the eastern U.S.coast(median value of 0.0143).In our study,field evidence of the suppression ofγ(N2O5)values due to pNO3-content,organics and the enhancement by aerosol liquid water content(ALWC)is in line with previous laboratory study results.Low ALWC,high pNO3-content,and particle morphology(inorganic core with an organic shell)accounted for the lowγ(N2O5)values in the North China Plain(NCP)during wintertime.The field-derivedγ(N2O5)values are well reproduced by a revised parameterization method,which includes the aerosol size distribution,ALWC,nitrate and organic coating,suggesting the feasibility of comprehensive parameterization in the NCP during wintertime.展开更多
In the last four decades, various techniques including spectroscopic, wet chemical and mass spectrometric methods, have been developed and applied for the detection of ambient nitrous acid(HONO). We developed a HONO...In the last four decades, various techniques including spectroscopic, wet chemical and mass spectrometric methods, have been developed and applied for the detection of ambient nitrous acid(HONO). We developed a HONO detection system based on long path photometry which consists of three independent modules i.e., sampling module, fluid propulsion module and detection module. In the propulsion module, solenoid pumps are applied. With solenoid pumps the pulsed flow can be computer controlled both in terms of pump stroke volume and pulse frequency, which enables the attainment of a very stable flow rate. In the detection module, a customized Liquid Waveguide Capillary Cell(LWCC) is used. The customized LWCC pre-sets the optical fiber in-coupling with the liquid wave guide, providing the option of fast startup and easy maintenance of the absorption photometry. In summer 2014, our system was deployed in a comprehensive campaign at a rural site in the North China Plain. More than one month of high quality HONO data spanning from the limit of detection to 5 ppb were collected. Intercomparison of our system with another established system from Forschungszentrum Juelich is presented and discussed. In conclusion, our instrument achieved a detection limit of 10 ppt V within2 min and a measurement uncertainty of 7%, which is well suited for investigation of the HONO budget from urban to rural conditions in China.展开更多
Herein a series of combretastatin A-4(CA-4)analogues with aggregation-induced emission characteristics(compounds a1-a19)were rationally designed and synthesized.The research results showed that the mechanism of AIE of...Herein a series of combretastatin A-4(CA-4)analogues with aggregation-induced emission characteristics(compounds a1-a19)were rationally designed and synthesized.The research results showed that the mechanism of AIE of a1-a19 could be attributed to the dual function of the restriction of intramolecular motion(RIM)and J-aggregate formation.Furthermore,the detailed investigation on the action mechanisms revealed that a19 diffused from lysosomes into the cytoplasm,and then targeted the colchicine binding site to induce cell cycle arrest and apoptosis in cancer cells.These results provide new ideas and impetus for the rational design of CA-4 analogues.展开更多
The photolysis frequency of NO2, j(NO2), is an important analytical parameter in the study of tropospheric chemistry. A chemical actinometer (CA) was built to measure the ambient j(NQ) based on a high precision ...The photolysis frequency of NO2, j(NO2), is an important analytical parameter in the study of tropospheric chemistry. A chemical actinometer (CA) was built to measure the ambient j(NQ) based on a high precision NOx instrument with 1 min time resolution. Parallel measurements of the ambient j(NO2) by using the CA and a commercial spectroradiometer (SR) were conducted at a typical urban site (Peking University Urban Environmental Monitoring Station) in Beijing. In general, good agreement was achieved between the CA and SR data with a high linear correlation coefficient (R2 = 0.977) and a regression slope of 1.12. The regression offset was negligible compared to the measured signal level. Thej(NO2) data were calculated using the tropospheric ultraviolet visible radiation (TUV) model, which was constrained to observe aerosol optical properties. The calculated j(NO2) was intermediate between the results obtained with CA and SR, demonstrating the consistency of all the parameters observed at this site. The good agreement between the CA and SR data, and the consistency with the TUV model results, demonstrate the good performance of the installed SR instrument. Since a drift of the SR sensitivity is expected by the manufacturer, we propose a regular check of the data acquired via SR against those obtained by CA for long-term delivery of a high quality series ofj(NO2) data. Establishing such a time series will be invaluable for analyzing the long-term atmospheric oxidation capacity trends as well as O3 pollution for urban Beijing.展开更多
Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds(VOCs). However,little information on secondary aeroso...Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds(VOCs). However,little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4–5 hr simulation, which was estimated to represent more than 10 days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol(SOA) production was 426 ± 85 mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China.展开更多
文摘Objective: To observe the efficacy of Shenmai injection in the treatment for adverse reactions of chemotherapy on advanced non-small cell lung cancer (NSCLC). Methods: 45 NSCLC patients with stages IIIb-IV were randomly divided into two groups: the treatment group (treated by chemotherapy combined with Shenmai injection) and the control group (treated by chemotherapy only). The efficacy of the two groups was evaluated after 3 cycles of treatment. Results: There was no significant difference between the two groups in the recent curative effects (P > 0.05), while there were significant differences between them in Karnofsky score and weight (P < 0.05). The treatment group was better than the control group in preventing leucopenia and decreased hemoglobin, and significant differences were found between them (P < 0.05). The incidence of thrombocytopenia, nausea and vomiting, hepatic and renal dysfunction in the treatment group was lower than that in the control group, but no significant differences were found between them (P > 0.05). Conclusion: Shenmai injection would not influence the efficacy of chemotherapy on advanced NSCLC patients, while it could improve the quality of life, increase the body weight of patients, alleviate adverse reactions of chemotherapy as myelosuppression so as to improve the tolerance of organism to chemotherapy.
基金financially supported by National Nature Science Foundation of China(No.81872816,81703451)Liaoning Revitalization Talents Program,No XLYC1808017+2 种基金Key projects of Technology bureau in Shenyang,No18400408Key projects of Liaoning Province Department of Education,No.2017LZD03supported by Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region。
文摘One of the major barriers in utilizing prodrug nanocarriers for cancer therapy is the slow release of parent drug in tumors.Tumor cells generally display the higher oxidative level than normal cells,and also displayed the heterogeneity in terms of redox homeostasis level.We previously found that the disulfide bond-linkage demonstrates surprising oxidationsensitivity to form the hydrophilic sulfoxide and sulphone groups.Herein,we develop oxidation-strengthened prodrug nanosystem loaded with pyropheophorbide a(PPa)to achieve light-activatable cascade drug release and enhance therapeutic efficacy.The disulfide bond-driven prodrug nanosystems not only respond to the redox-heterogeneity in tumor,but also respond to the exogenous oxidant(singlet oxygen)elicited by photosensitizers.Once the prodrug nanoparticles(NPs)are activated under irradiation,they would undergo an oxidative self-strengthened process,resulting in a facilitated drug cascade release.The IC50 value of the PPa@PTX-S-S NPs without irradiation was 2-fold higher than those of NPs plus irradiation.In vivo,the PPa@PTX prodrug NPs display prolonged systemic circulation and increased accumulation in tumor site.The PPa@PTXS-S NPs showed much higher efficiency than free PTX or the PPa@PTX-C-C NPs to suppress the growth of 4 T1 tumors.Therefore,this novel oxidation-strengthened disulfide-bridged prodrug-nanosystem has a great potential in the enhanced efficacy of cancer synergetic photochemotherapy.
基金This study is funded by the National Natural Science Foundationof China(NSFC)(grant No.91844301)the NSFC e Creative ResearchGroup Fund(grant No.22221004)+1 种基金the National Key Research andDevelopment Program of China(grant No.2022YFC3701000,Task1)the bilateral SwedeneChina framework program“Photochemical smog in China:formation,transformation,impactand abatement strategies”(grant No.639-2013-6917).
文摘The mechanisms of new particle formation(NPF)events that occurred under high aerosol loadings(“polluted”NPF)in the atmosphere have been unclear,which has inhibited the precision of particlepollution control.To deepen the understanding of how the“polluted”NPF events occur,a one-monthcomprehensive measurement was conducted in the atmosphere of Beijing during the summer of2016.The“clean”NPF events(frequency=22%)(condensation sink,CS<0.015 s^(-1))were found to becaused by local nucleation and growth.The“polluted”NPF events(frequency=28%)(CS>0.015 s^(-1))were influenced by both local nucleation-growth and regional transport,and the contributions from thetwo factors to 6e25 nm particle number concentration were 60%and 40%,respectively.This studyemphasized the importance of the transport for nanoparticles in relatively polluted atmospheres,and forthat the regional joint particle pollution control would be an essential policy.
基金supported from the research projects of the Environmental Public Welfare Industry in China (201509001,201409005)the National Science and Technology Support Program of China (2014BAC21B01)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB05010500)the Special Fund of State Key Joint Laboratory of Environment Simulation and Pollution Control (18K03ESPCP)the EU-project AMIS (Fate and Impact of Atmospheric Pollutants,PIRSES-GA-2011295132)
文摘In the troposphere, ozone is a harmful gas compound to both human health and vegetation. Ozone is produced from the reaction of NO_x(@NO + NO_2) and VOCs(volatile organic compounds) with light. Due to the highly nonlinear relationships between ozone and its precursors, proper ozone mitigation relies on the knowledge of chemical mechanisms. In this study, an observation-based method is used to simulate ozone formation and elucidate its controlling factors for a rural site on the North China Plain. The instantaneous ozone production rate is calculated utilizing a box model using the dataset obtained from the Wangdu campaign. First, the model was operated in a time-dependent mode to calculate the ozone production rate at each time stamp. The calculated ozone formation rate showed a diurnal average maximum value of 17 ppbv/h(1-h diurnal averaged). The contribution of individual peroxy radicals to ozone production was analyzed. In addition, the functional dependence of calculated P(O_3) reveals that ozone production was in a NO_x-limited regime during the campaign. Furthermore, the missing peroxy radical source will further extend NO_x-limited conditions to earlier in the day, making NO_xlimitation dominate more of a day than the current chemical model predicts. Finally, a multiple scenarios mode,also known as EKMA(empirical kinetic modeling approach), was used to simulate the response of P(O_3) to the imaginary change in precursor concentrations. We found that ozone production was in the NO_x-limited region. However, the use of NO_2 measured by the molybdenum converter and/or the absence of a peroxy radical source in the current chemical model could over-emphasize the VOC-limited effect on ozone production.
基金supported by the National Natural Science Foundation of China(No.91544221)the Ministry of Environmental Protection of the People's Republic of China(No.201509001)the Ministry of Science and Technology of the People's Republic of China(No.XDB05010500)
文摘To investigate the characteristics and the specific mechanism of continuous haze,comprehensive measurements were conducted from 15 October to 19 November in the Atmospheric Environment Monitoring Super-Station in Heshan of Guangdong province.Five haze episodes occurred in October and November 2014 in the Pearl River Delta(PRD)region. The meteorological parameters, gas data, chemical compositions, and optical parameters of the aerosols were obtained. Among these events, the second haze episode,with the highest concentration of PM2.5 of 187.51 μg/m^3, was the most severe. NO^3-was always higher than SO_4^(2-), which indicated that motor vehicles played an important role in the haze, even though the oxidation rate from SO_2 to SO_4^(2-)was faster than that of NOXto NO_3^-. The difference between the hourly averages of Na+and K+during the haze episode and clean days was small, implying that straw combustion and sea salt had no significant effect on the occurrence of haze, and the backward trajectories of the air masses also conformed with this result. The air pollutants were difficult to disperse because of the significant decrease in the planetary boundary layer(PBL) height. Relative humidity played a crucial role in the formation of haze by leading to hygroscopic growth of the diameter of aerosols.
基金supported by the following projects:the National Key R&D(Research and Development)Program of China(No.2016YFC0202800:Task 1)the National Natural Science Foundation of China(Nos.41475127,41571130021)the framework research program on ‘Photochemical smog in China’ financed by the Swedish Research Council(No.639-2013-6917)
文摘Particle density is an important physical property of atmospheric particles. The information on high time-resolution size-resolved particle density is essential for understanding the atmospheric physical and chemical aging processes of aerosols particles. In the present study, a centrifugal particle mass analyzer (CPMA) combined with a differential mobility analyzer (DMA) was deployed to determine the size-resolved effective density of 50 to 350 nm particles at a rural site of Beijing during summer 2016. The measured particle effective densities decreased with increasing particle sizes and ranged from 1.43 to 1.55 g/cm3, on average. The effective particle density distributions were dominated by a mode peaked at around 1.5 g/cm3 for 50 to 350 nm particles. Extra modes with peaks at 1.0, 0.8, and 0.6 g/cm3 for 150, 240, and 350 nm particles, which might be freshly emitted soot particles, were observed during intensive primary emissions episodes. The particle effective densities showed a diurnal variation pattern, with higher values during daytime. A case study showed that the effective density of Aitken mode particles during the new particle formation (NPF) event decreased considerably, indicating the significant contribution of organics to new particle growth.
基金supported by the National Natural Science Foundation of China(21976006,41907185,91844301,91544225)Beijing Natural Science Foundation,China(JQ19031)China Postdoctoral Science Foundation(2018M641095,2019T120023)。
文摘The heterogeneous hydrolysis of dinitrogen pentoxide(N2O5)plays an important role in regulating NOx.The N2O5 uptake coefficient,γ(N2O5),was determined using an iterative box model that was constrained to observational data obtained in suburban Beijing from February to March 2016.The box model determined 2289 individualγ(N2O5)values that varied from<0.001 to 0.02 with an average value of 0.0046±0.0039(and a median value of 0.0032).We found the derived winterγ(N2O5)values in Beijing were relatively low as compared to values reported in previous field studies conducted during winter in Hong Kong(average value of 0.014)and the eastern U.S.coast(median value of 0.0143).In our study,field evidence of the suppression ofγ(N2O5)values due to pNO3-content,organics and the enhancement by aerosol liquid water content(ALWC)is in line with previous laboratory study results.Low ALWC,high pNO3-content,and particle morphology(inorganic core with an organic shell)accounted for the lowγ(N2O5)values in the North China Plain(NCP)during wintertime.The field-derivedγ(N2O5)values are well reproduced by a revised parameterization method,which includes the aerosol size distribution,ALWC,nitrate and organic coating,suggesting the feasibility of comprehensive parameterization in the NCP during wintertime.
基金supported by the National Natural Science Foundation of China (Nos. 41375124, 21190052, 41121004)the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB05010500)+1 种基金the special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control (No. 13Z02ESPCP)supported by the Collaborative Innovation Center for Regional Environmental Quality
文摘In the last four decades, various techniques including spectroscopic, wet chemical and mass spectrometric methods, have been developed and applied for the detection of ambient nitrous acid(HONO). We developed a HONO detection system based on long path photometry which consists of three independent modules i.e., sampling module, fluid propulsion module and detection module. In the propulsion module, solenoid pumps are applied. With solenoid pumps the pulsed flow can be computer controlled both in terms of pump stroke volume and pulse frequency, which enables the attainment of a very stable flow rate. In the detection module, a customized Liquid Waveguide Capillary Cell(LWCC) is used. The customized LWCC pre-sets the optical fiber in-coupling with the liquid wave guide, providing the option of fast startup and easy maintenance of the absorption photometry. In summer 2014, our system was deployed in a comprehensive campaign at a rural site in the North China Plain. More than one month of high quality HONO data spanning from the limit of detection to 5 ppb were collected. Intercomparison of our system with another established system from Forschungszentrum Juelich is presented and discussed. In conclusion, our instrument achieved a detection limit of 10 ppt V within2 min and a measurement uncertainty of 7%, which is well suited for investigation of the HONO budget from urban to rural conditions in China.
基金supported by the National Key R&D Programs of China(2017YFC1103603)the National Natural Science Foundation of China(21877049,32171296)+2 种基金Guangdong Natural Science Foundation(2020B1515120043)the Innovation Team Project in Guangdong Colleges and Universities(2019KCXTD008)K.C.Wong Education Foundation。
文摘Herein a series of combretastatin A-4(CA-4)analogues with aggregation-induced emission characteristics(compounds a1-a19)were rationally designed and synthesized.The research results showed that the mechanism of AIE of a1-a19 could be attributed to the dual function of the restriction of intramolecular motion(RIM)and J-aggregate formation.Furthermore,the detailed investigation on the action mechanisms revealed that a19 diffused from lysosomes into the cytoplasm,and then targeted the colchicine binding site to induce cell cycle arrest and apoptosis in cancer cells.These results provide new ideas and impetus for the rational design of CA-4 analogues.
基金Acknowledgements We have profited from discussions with Dr. Franz Rohrer. We acknowledge financial support from the National Natural Science Foundation of China (Grant Nos. 91544225 and 41375124), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB05010500), and the special fund of the State Key Joint Laboratory of Environment Simulation and Pollution Control (13Z02ESPCP).
文摘The photolysis frequency of NO2, j(NO2), is an important analytical parameter in the study of tropospheric chemistry. A chemical actinometer (CA) was built to measure the ambient j(NQ) based on a high precision NOx instrument with 1 min time resolution. Parallel measurements of the ambient j(NO2) by using the CA and a commercial spectroradiometer (SR) were conducted at a typical urban site (Peking University Urban Environmental Monitoring Station) in Beijing. In general, good agreement was achieved between the CA and SR data with a high linear correlation coefficient (R2 = 0.977) and a regression slope of 1.12. The regression offset was negligible compared to the measured signal level. Thej(NO2) data were calculated using the tropospheric ultraviolet visible radiation (TUV) model, which was constrained to observe aerosol optical properties. The calculated j(NO2) was intermediate between the results obtained with CA and SR, demonstrating the consistency of all the parameters observed at this site. The good agreement between the CA and SR data, and the consistency with the TUV model results, demonstrate the good performance of the installed SR instrument. Since a drift of the SR sensitivity is expected by the manufacturer, we propose a regular check of the data acquired via SR against those obtained by CA for long-term delivery of a high quality series ofj(NO2) data. Establishing such a time series will be invaluable for analyzing the long-term atmospheric oxidation capacity trends as well as O3 pollution for urban Beijing.
基金supported by the National Key Basic Research and Development Program (No. 2013CB228500)the National Basic Research Program (973) of China (Nos. 2013CB228503, 2013CB228502)+3 种基金National Natural Science Foundation of China (Nos. 91544214, 51636003)the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB05010500)China Postdoctoral Science Foundation (No. 2015M580929)the State Key Lab of Automotive Safety and Energy at Tsinghua University for their support for the experiments
文摘Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds(VOCs). However,little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4–5 hr simulation, which was estimated to represent more than 10 days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol(SOA) production was 426 ± 85 mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China.