Coumarin and its derivatives,presenting in many organisms(plants,fungi,and bacteria),are critical metabolites composed of fused benzene andα-pyrone rings.With unique biological and chemical properties,coumarin deriva...Coumarin and its derivatives,presenting in many organisms(plants,fungi,and bacteria),are critical metabolites composed of fused benzene andα-pyrone rings.With unique biological and chemical properties,coumarin derivatives possess great technological potential in the agrochemicals,pharmaceuticals,food,and cosmetic industries.The increasing demand for coumarin derivatives accelerates the research in biological and chemical synthesis to provide stable and scalable sources of coumarins.However,the complex structures and unknown pathways have limited the progress in the biosynthesis of coumarin derivatives.Here,we summarize recent developments and provide a detailed analysis of coumarin derivative biosynthetic pathways in different organisms.展开更多
基金supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM128620the support from the College of Engineering,The University of Georgia,Athens
文摘Coumarin and its derivatives,presenting in many organisms(plants,fungi,and bacteria),are critical metabolites composed of fused benzene andα-pyrone rings.With unique biological and chemical properties,coumarin derivatives possess great technological potential in the agrochemicals,pharmaceuticals,food,and cosmetic industries.The increasing demand for coumarin derivatives accelerates the research in biological and chemical synthesis to provide stable and scalable sources of coumarins.However,the complex structures and unknown pathways have limited the progress in the biosynthesis of coumarin derivatives.Here,we summarize recent developments and provide a detailed analysis of coumarin derivative biosynthetic pathways in different organisms.