The surface properties of catalysts determine the intrinsic activity and adaptability.Ruthenium is regarded as a potential candidate to substitute platinum for water electrolysis due to the low cost and analogous elec...The surface properties of catalysts determine the intrinsic activity and adaptability.Ruthenium is regarded as a potential candidate to substitute platinum for water electrolysis due to the low cost and analogous electronic structures while it suffers from severe dissolution and stability problems.Herein,the modification of Ru/C with atomically dispersed cobalt atoms is achieved via a simple thermal doping method.The newly formed amorphous shell with Ru-Co sites on the Ru/C catalyst improved the hydrogen evolution reaction activity and stability significantly.Impressively,the obtained Co1Ru@Ru/CN_(x)catalyst exhibited an overpotential as low as 30 mV at 10 mA cm^(-2)in an alkaline medium,which is among the best HER catalysts reported so far.The oxygen oxophile Co prevents the fast oxidation and dissolution of Ru species,ensuring outstanding long-term durability up to 70 h.Theoretical calculations reveal that the Ru-Co coordination acts as a more active site for water dissociation than the Ru-Ru.Meanwhile,the"Ru-Co shell/Ru core"structures show high adaptability for the reaction conditions.This simple doping strategy offers prospects for scalable preparation of highly active electrocatalysts.展开更多
Organic solid waste(OSW)contains many renewable materials.The pyrolysis and gasification of OSW can realize resource utilization,and its products can be used for methanation reaction to produce synthetic natural gas i...Organic solid waste(OSW)contains many renewable materials.The pyrolysis and gasification of OSW can realize resource utilization,and its products can be used for methanation reaction to produce synthetic natural gas in the specific reactor.In order to understand the dynamic characteristics of the reactor,a three-dimensional numerical model has been established by the method of Computational Fluid Dynamics(CFD).Along the height of the reactor,the particle distribution in the bed becomes thinner and the mean solid volume fraction decreases from 4.18%to 0.37%.Meanwhile,the pressure fluctuation range decreased from 398.76 Pa at the entrance to a much lower value of 74.47 Pa at the exit.In this simulation,three parameters of gas inlet velocity,operating temperature and solid particle diameter are changed to explore their influences on gas-solid multiphase flow.The results show that gas velocity has a great influence on particle distribution.When the gas inlet velocity decreases from 6.51 to 1.98 m/s,the minimum height that particles can reach decreases from 169 to 100 mm.Additionally,as the operating temperature increases,the particle holdup inside the reactor changes from 0.843%to 0.700%.This indicates that the particle residence time reduces,which is not conducive to the follow-up reaction.Moreover,with the increase of particle size,the fluctuation range of the pressure at the bottom of the reactor increases,and its standard deviation increases from 55.34 to 1266.37 Pa.展开更多
The selective hydrogenation of phenol to cyclohexanone is an important process in the chemical industry.However,achieving high selectivity at high conversion rates is highly challenging,particularly under continuous r...The selective hydrogenation of phenol to cyclohexanone is an important process in the chemical industry.However,achieving high selectivity at high conversion rates is highly challenging,particularly under continuous reaction conditions.Here,we found that the presence of Na alkaline additives(NaX,X=CO3^2–,HCO^3–,or OH^–)on Pd/Al2O3 not only promoted the phenol conversion from 8.3%to>99%but also increased the cyclohexanone selectivity from 89%to>97%during the continuous hydrogenation of phenol on a fixed bed reactor.After 1200 h of continuous reaction,no activity or selectivity attenuation was observed and the turnover number was approximately 2.9×10^5.Density functional theory calculations,spectroscopic,and dynamics studies demonstrated that the addition of NaX greatly promoted phenol adsorption and hydrogen activation,thereby improving catalytic activity.Simultaneously,the formation of a“-C=O-Na-”intermediate inhibited the excessive hydrogenation and intermolecular coupling of cyclohexanone,leading to high selectivity.展开更多
Surface properties of a catalyst, especially exposed crystal facets and coordination states, directly affect the catalyst's performance. Herein, we illustrate how reaction conditions direct the fabrication of a we...Surface properties of a catalyst, especially exposed crystal facets and coordination states, directly affect the catalyst's performance. Herein, we illustrate how reaction conditions direct the fabrication of a wellbehaved catalyst with desired structures in the case of hydrogen evolution reaction(HER). Stable adsorbed PtClxions on CNTs are in situ electrochemically reduced into a unique Pt nanosheet structure enclosed by high-index(311) and low-index(200) and(111) facets during HER process. Experimental results and density functional theory(DFT) calculation disclose the function mechanism between these unique structures and reactants. The adsorbed H2 O and reactive species act as capping agents protecting the(311) facet where the dissociation of water molecule is promoted, and the produced H*intermediates favorably combine and release on the nearby low-index Pt sites. The joint collaborations of these active sites afford Pt nanosheets comparable activity to 20 wt% Pt/C and a 12.7-fold over mass activity. These findings provide novel insight into the synthesis of heterogeneous catalysts with high specificity.展开更多
Recent studies have suggested that rare earth(RE)elements in catalysts significantly influence the performance of the ammonia synthesis.The REs appear in various forms in the ammonia synthesis catalysts including supp...Recent studies have suggested that rare earth(RE)elements in catalysts significantly influence the performance of the ammonia synthesis.The REs appear in various forms in the ammonia synthesis catalysts including supports(oxides,hydrides,and nitrides),promotors,and intermetallic.Besides the conventional RE oxide-supporting catalysts(mainly Ru/REO),some new RE-containing catalyst systems,such as electrode and nitride systems,could drive the ammonia synthesis via a benign Mars-van Krevelen mechanism or multi-active-site mode,affording high ammonia synthesis performance under mild conditions.These works demonstrate the great potential of RE-containing catalysts for more efficient ammonia synthesis.This review summarizes the contributions of different kinds of RE-based catalysts and highlights the function mechanism of incorporated REs.Finally,an overview of this area and the challenges for further investigation are provided.展开更多
Although tin monoxide (SnO) is an interesting compound due to its p-type conductivity,a widespread application of SnO has been limited by its narrow band gap of 0.7 eV.In this work,we theoretically investigate the str...Although tin monoxide (SnO) is an interesting compound due to its p-type conductivity,a widespread application of SnO has been limited by its narrow band gap of 0.7 eV.In this work,we theoretically investigate the structural and electronic properties of several SnO phases under high pressures through employing van der Waals (vdW) functionals.Our calculations reveal that a metastable SnO (β-SnO),which possesses space group P2_(1)/c and a wide band gap of 1.9 eV,is more stable than α-SnO at pressures higher than 80 GPa.Moreover,a stable (space group P2/c) and a metastable (space group Pnma) phases of SnO appear at pressures higher than 120 GPa.Energy and topological analyses show that P2/c-SnO has a high possibility to directly transform to β-SnO at around 120 GPa.Our work also reveals that β-SnO is a necessary intermediate state between high-pressure phase Pnma-SnO and low-pressure phase α-SnO for the phase transition path Pnma-SnO →β-SnO →α-SnO.Two phase transition analyses indicate that there is a high possibility to synthesize β-SnO under high-pressure conditions and have it remain stable under normal pressure.Finally,our study reveals that the conductive property of β-SnO can be engineered in a low-pressure range (0-9 GPa)through a semiconductor-to-metal transition,while maintaining transparency in the visible light range.展开更多
基金support from the National Natural Science Foundation of China(21802120,21872121,and 21908189)the National Key R&D Program of China(2016YFA0202900)+3 种基金the Key R&D Project of Zhejiang Province(2020C01133)the Fundamental Research Funds for the Central Universities(G2019KY05119)the China Postdoctoral Science Foundation(2021 M692634)the Natural Science Basic Research Program of Shaanxi Province(2022JQ-118)are greatly appreciated.
文摘The surface properties of catalysts determine the intrinsic activity and adaptability.Ruthenium is regarded as a potential candidate to substitute platinum for water electrolysis due to the low cost and analogous electronic structures while it suffers from severe dissolution and stability problems.Herein,the modification of Ru/C with atomically dispersed cobalt atoms is achieved via a simple thermal doping method.The newly formed amorphous shell with Ru-Co sites on the Ru/C catalyst improved the hydrogen evolution reaction activity and stability significantly.Impressively,the obtained Co1Ru@Ru/CN_(x)catalyst exhibited an overpotential as low as 30 mV at 10 mA cm^(-2)in an alkaline medium,which is among the best HER catalysts reported so far.The oxygen oxophile Co prevents the fast oxidation and dissolution of Ru species,ensuring outstanding long-term durability up to 70 h.Theoretical calculations reveal that the Ru-Co coordination acts as a more active site for water dissociation than the Ru-Ru.Meanwhile,the"Ru-Co shell/Ru core"structures show high adaptability for the reaction conditions.This simple doping strategy offers prospects for scalable preparation of highly active electrocatalysts.
基金Funding Statement:This work was supported by the National Key Research and Development Program of China[Grant No.2019YFC1906802].
文摘Organic solid waste(OSW)contains many renewable materials.The pyrolysis and gasification of OSW can realize resource utilization,and its products can be used for methanation reaction to produce synthetic natural gas in the specific reactor.In order to understand the dynamic characteristics of the reactor,a three-dimensional numerical model has been established by the method of Computational Fluid Dynamics(CFD).Along the height of the reactor,the particle distribution in the bed becomes thinner and the mean solid volume fraction decreases from 4.18%to 0.37%.Meanwhile,the pressure fluctuation range decreased from 398.76 Pa at the entrance to a much lower value of 74.47 Pa at the exit.In this simulation,three parameters of gas inlet velocity,operating temperature and solid particle diameter are changed to explore their influences on gas-solid multiphase flow.The results show that gas velocity has a great influence on particle distribution.When the gas inlet velocity decreases from 6.51 to 1.98 m/s,the minimum height that particles can reach decreases from 169 to 100 mm.Additionally,as the operating temperature increases,the particle holdup inside the reactor changes from 0.843%to 0.700%.This indicates that the particle residence time reduces,which is not conducive to the follow-up reaction.Moreover,with the increase of particle size,the fluctuation range of the pressure at the bottom of the reactor increases,and its standard deviation increases from 55.34 to 1266.37 Pa.
基金supported by the National Natural Science Foundation of China (21622308)Key Program Supported by the Natural Science Foundation of Zhejiang Province, China (LZ18B060002)the Fundamental Research Funds for the Central Universities (2017XZZX002-16)~~
文摘The selective hydrogenation of phenol to cyclohexanone is an important process in the chemical industry.However,achieving high selectivity at high conversion rates is highly challenging,particularly under continuous reaction conditions.Here,we found that the presence of Na alkaline additives(NaX,X=CO3^2–,HCO^3–,or OH^–)on Pd/Al2O3 not only promoted the phenol conversion from 8.3%to>99%but also increased the cyclohexanone selectivity from 89%to>97%during the continuous hydrogenation of phenol on a fixed bed reactor.After 1200 h of continuous reaction,no activity or selectivity attenuation was observed and the turnover number was approximately 2.9×10^5.Density functional theory calculations,spectroscopic,and dynamics studies demonstrated that the addition of NaX greatly promoted phenol adsorption and hydrogen activation,thereby improving catalytic activity.Simultaneously,the formation of a“-C=O-Na-”intermediate inhibited the excessive hydrogenation and intermolecular coupling of cyclohexanone,leading to high selectivity.
基金Financial supports from the Key Program Supported by the Natural Science Foundation of Zhejiang Province, China (LZ18B060002)the National Natural Science Foundation of China (21802120, 21872121)。
文摘Surface properties of a catalyst, especially exposed crystal facets and coordination states, directly affect the catalyst's performance. Herein, we illustrate how reaction conditions direct the fabrication of a wellbehaved catalyst with desired structures in the case of hydrogen evolution reaction(HER). Stable adsorbed PtClxions on CNTs are in situ electrochemically reduced into a unique Pt nanosheet structure enclosed by high-index(311) and low-index(200) and(111) facets during HER process. Experimental results and density functional theory(DFT) calculation disclose the function mechanism between these unique structures and reactants. The adsorbed H2 O and reactive species act as capping agents protecting the(311) facet where the dissociation of water molecule is promoted, and the produced H*intermediates favorably combine and release on the nearby low-index Pt sites. The joint collaborations of these active sites afford Pt nanosheets comparable activity to 20 wt% Pt/C and a 12.7-fold over mass activity. These findings provide novel insight into the synthesis of heterogeneous catalysts with high specificity.
基金the National Natural Science Foundation of China(Nos.51872242 and 21802120)the Fundamental Research Funds for the Central Universities(No.D5000220172)+1 种基金the Postdoctoral Research Foundation of China(No.2021M692634)are greatly appreciatedsupported by the JSPS Kahenhi Grant-in-Aid(No.17H06153).
文摘Recent studies have suggested that rare earth(RE)elements in catalysts significantly influence the performance of the ammonia synthesis.The REs appear in various forms in the ammonia synthesis catalysts including supports(oxides,hydrides,and nitrides),promotors,and intermetallic.Besides the conventional RE oxide-supporting catalysts(mainly Ru/REO),some new RE-containing catalyst systems,such as electrode and nitride systems,could drive the ammonia synthesis via a benign Mars-van Krevelen mechanism or multi-active-site mode,affording high ammonia synthesis performance under mild conditions.These works demonstrate the great potential of RE-containing catalysts for more efficient ammonia synthesis.This review summarizes the contributions of different kinds of RE-based catalysts and highlights the function mechanism of incorporated REs.Finally,an overview of this area and the challenges for further investigation are provided.
基金This work is supported by the National Natural Science Foundation of China(Grant No.51872242)the Fundamental Research Funds for the Central Universities(Grant No.D5000200142)+1 种基金Vladislav A.BLATOV thanks the Russian Science Foundation(Grant No.16-13-10158)for support of developing the network topological modelArtem R.OGANOV thanks the Russian Science Foundation(Grant No.19-72-30043).
文摘Although tin monoxide (SnO) is an interesting compound due to its p-type conductivity,a widespread application of SnO has been limited by its narrow band gap of 0.7 eV.In this work,we theoretically investigate the structural and electronic properties of several SnO phases under high pressures through employing van der Waals (vdW) functionals.Our calculations reveal that a metastable SnO (β-SnO),which possesses space group P2_(1)/c and a wide band gap of 1.9 eV,is more stable than α-SnO at pressures higher than 80 GPa.Moreover,a stable (space group P2/c) and a metastable (space group Pnma) phases of SnO appear at pressures higher than 120 GPa.Energy and topological analyses show that P2/c-SnO has a high possibility to directly transform to β-SnO at around 120 GPa.Our work also reveals that β-SnO is a necessary intermediate state between high-pressure phase Pnma-SnO and low-pressure phase α-SnO for the phase transition path Pnma-SnO →β-SnO →α-SnO.Two phase transition analyses indicate that there is a high possibility to synthesize β-SnO under high-pressure conditions and have it remain stable under normal pressure.Finally,our study reveals that the conductive property of β-SnO can be engineered in a low-pressure range (0-9 GPa)through a semiconductor-to-metal transition,while maintaining transparency in the visible light range.